이거 무슨 증명..? 논리..? 인지 아시는 분 계시나요.
학교 시험문제 중에
위 식을 2x로 나눈 후, 미분해서 f(x)를 구해야하는 문제가 있었는데요...
저는 x=0일 시에 나누기를 사용할 수 없어서, x=0일 때와 x=/=0일 때로 나누어 계산을 하려했는데 답지를 보니 바로 2x로 나누어 f(x)를 구하더라고요?? 선생님께 x가 0일 수도 있는데 이게 가능한 것인지 물어보았더니, 일반적으로 불가능한 것이 맞으나 x가 모든 실수를 대상으로 할 때 하나 정도의 실수는 무시할 수 있다?? 뭐 이런 이론인지 증명인지가 있다는데...혹시 뭔지 아시나요? 그리고 이게 고등학교 수학과정에서 쓰여도 되는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 0
안녕하세요
-
얼?버기 1
-
이번 수능언매 40번에 5번 찍어서 틀린 사람입니다. 4번은 방송 출연자가...
-
따뜻한 우동먹고싶다 따뜻한 쌀국수먹고싶다 따뜻한 붕어빵먹고싶다 따뜻한 호떡먹고싶다
-
현역 때 떨어지고 수시 재수로 다시 지원하면 무조건 떨어짐?
-
의대 사탐저격 0
현실성 있는듯? 오히려 존나 유리한듯? 올해 물리화학말고 생윤윤사할걸 개 시 발
-
늦게일어도려해도 안되는..
-
고대 내신 반영전형도 그렇고 손해 볼 내신은 아닌 겅가요? 그냥 지방 일반고임요
-
현정훈 물2 3
라이브 개강하나요? 현역이라 재종 못 들어가요 라이브 개강 안 하면 그냥 지2하려고 함...
-
진심으로.. 안먹으면 머리아픔
-
한시간 잤는데도 어질어질하고 내 생각과 행동 사이에 딜레이가 있는 것 같음...
-
고3이라 정시에 대한 정보가 없어서 여쭈어봅니다..
-
궁금합니다
-
문과입니다...그리고 지금 예비고3 메가패스 해놓은 상태인데 환불하면 전액 환불 가능한건가요?
-
얼버기 4
수면 패턴의 정상화
-
ㅈㄱㄴ
-
기상 완료 오늘도 ㅍㅇㅌ
-
가슴 찢어질거같네...ㅋㅋㅋ
-
저는 정시파이터이고 모고는 국어 5에서 높3으로 올렸고 수학은 3,4 왔다갔다 하고...
-
대부분 메가측정되엇던거에서 떨어지나요?.. 올라가는 경우는 없나요 국어...
-
설의 1
언매 미적 물2 지2로 내신 cc이면 정시일반전형으로 합격 불가능한가요?
-
그 자리에서 말하면 부정행위 처리됐었나?
-
(백분위) 언매 96 미적 96 영어1 물리 96 화학 98이요… 지금 거의 모든...
-
낮 22도 어디갔노
-
혼자한거긴 한데 논술복기한거 여기다가 올려도 될지 모르겠고 걍 내가 풀고 온거...
-
뭔가 18~20,25~29,43~45 푸는게 정배였는데 중간중간에 들을게 너무...
-
작수 54455 25수능 가채점상 23312 지옥의2024년 ㅅㅂ것
-
개인적으로 연계 공부에 굉장히 부정적인 입장이라 올해 수능을 보기까지 개인적으로는...
-
오타랑 비문, 문제 자체검수도 하다보니 7시간이나 걸림;; 초안은 4시간컷인데 졸려죽겟네
-
지구과학1 1컷 8
44라는 여론들이 왜 점점 많아지는거 같죠 ㅋㅋㅋ 다수 업체들 예상처럼 1컷 42이길...!
-
등급컷 0
님들 물리 1컷 46될 가능성은 없나여? 지구 2컷 38될 가능성도...
-
롤 정신병 걸릴것같아.... 탑레 다이아, 현재 에메-플레 지옥에 빠짐 오버워치...
-
언매 vs 화작 1
재수 준비하고 있는데 언매 할지 화작 할지 고민중입니다 이번 수능에서 화작 15분...
-
치타는 울다가 웃어서 엉덩이에 털났다.
-
반갑습니다. 19
-
사실상 오지 말라죠? 최고점-최저점 20점 이상이냐 이하냐에 따라 다르지만
-
지금 6등급이구. . . 일단새벽 6시-7시 20분까지 모의고사연습 9시까지...
-
3월 말부터 공부하면요 ㅠ
-
정상화좀
-
일단 3월부터 수능날까지 매일 3-4시간 투자할거고 3월말부터개념,기출 들이박고...
-
33257수의대 1
과탐은 올해하다가 놧는데 재수하면 수의대 갈 수 잇을까요 과탐은 생지로 바꾸려합니다
-
님들 나 어때? 1
나 진심 문제 있는걸까. . 너무 불안해
-
생지랑 정도 많이들었고, 쏟은 시간이 아까워서 사탐런을 하기 망설여집니다 우선...
-
ㄹㅇ 중간에 정병왔을거같음 국어 5월중순인가에 풀려서 경기도에서 버스타고 갔는데...
-
가채점 지금 진학사나 메가에서 점수 주는 거 확통틀이면 표점 우세한 거 반영되어있나요?
-
생각보다 꽤 많은 동아리가 나이 많으면 컷합니다 지금 기준 9n부터는 신입컷하더라구요
-
학교 다니면서 느낌 진짜 있음 그냥 나랑 다른거라 부럽다거나 그런 느낌도 안듦걍...
-
고1이고 스카다니고있는데 중학생들 시험기간되면 너무 시끄럽고 사람이 많아서 집가까운...
-
고인물임
연속함수라서 되는거 아닐까요
x != 0이라 가정 후 계산
-> x가 0 좌/우극한으로 갈 때도 나눈 식은 성립
-> 어차피 연속이니 x=0일때도 같은 값 도출
그러니까
1. 위 식의 x->0+= x->0-이니 2x로 나누어도 x->0+= x->0-이다.
2. 연속함수이니 좌미분계수 = 우미분계수 = 함숫값이라는건가요...?
그쳐
근데 f(x)가 연속함수라는 조건이 있었죠..?
f(x)가 연속함수라는 조건은 없고, 인테그랄의 우변이 ax^5 + x^4 + ⋯ 이긴 했는데, 저는 인테그랄 내의 f(x)의 연속여부와 정적분의 연속여부는 상관이 없다고 배워서...
우변이 다항식이었으면 그냥 미분해도 되겠네요 자동적으로 연속+미분가능한 함수임이 표현된 것이니까
제가 f(x)의 연속성을 물은건 아마 우리 교육과정 내에서는 'f(x)가 연속이면 그에 부정적분을 씌운 함수는 미분가능하다'는 사실을 쓸 수 있어서 그랫서요
그건모르겟는데 f(x)가 연속이면 나눠도됌
인테그랄 안에 f(x)가 있다면 고등학교 문제에서는 '연속함수 f(x) ~~'라고 주어지긴 할텐데요..
혹시 질문 하나 괜찮을까요? 위에 쓴 식의 우변이 ax^5 + x^4 + ⋯ 라고 하면 반드시 f(x)가 연속함수라고 볼 수 있는건가요? 개념 공부 할 때 인테그랄 내의 f(x)의 연속여부와 정적분의 연속여부는 상관이 없다고 배워서 헷갈리네요.
발문에 f가 연속함수니 다항함수니 이런 말은 아예 없었나요?
위 식의 우변이 ax^5 + x^4 + bx^3 + x^2 + cx일 때 a,b,c와 f(x)를 구하라고 되어있었습니다
https://orbi.kr/00040517614
요 글 한번 참고해보시죠