자작 수학문제 (문이과 공통)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
25수학 공통15번까지 스뮤스하게 풀려서 만점인줄 ㅎ 5
ㅎㅎ 주관식에서 미끄덩햇네 ㅎ
-
해보고 싶은데 필력이 너무 그지 같아서 못 알아 먹을 것 같음 ㅠ
-
국어: 내가 안 물어봤으면 안할뻔함 수학: 그나마 시켜주긴 함 영어: ㄹㅇ안함...
-
1.미미미누 교대,교사 관련 영상들 + 댓글창에 현직 교사들 댓글 2.pd수첩...
-
설사범, 연생과대, 고정경대에서 이과로 전과 힘든가요?? 0
학벌올리고 전과하고싶은디 ㅠㅠ 전과 힘든가요??
-
수능 끝나고 싹 다 가정학습 처리해줘서 2월 졸업식 때까지 학교 5일도 안 나갔음...
-
한지,세지도 ㄱㅊ나요? 제가 타임어택,안정성 떨어지는걸 극혐해서요 ㅠ
-
하고 싶은 거 다 해봐야지 나중에 후회하는 것보단 vs돈도없구자신도없음 에휴
-
침대에 달린 등도 안 끄고 잤네
-
주어진 함수 f(x)의 그래프가 다음과 같습니다. 단순하게 생각할 때 이 함수에...
-
주변에 미적 100은 많이 없는데 96 92는 진짜 개 많음 미적 1컷 92는...
-
화장실도 인기다리게 칸 개많았고 의자랑 책상도 좀 옛날거긴했는데 그래도 사이즈도...
-
아니 소재 진짜 막 쓰네.. 딥페이크 저거는 아예 저 글자 빼냐 마냐 하나로 정치...
-
1년 내내 안씻는 물스퍼거 놈들이 너무 많아
-
파업 때문이구나 ㅡㅡ
-
현실과이상의괴리 8
내적갈등 해소방안 : 한번더보기
-
국어 노베 0
국어 공부해본 적 없고 고2라서 모의고사 칠 때만 모고 푼 적 없어요. 진짜...
-
과탐가산 0
과탐 2등급 대가리가 가산5프로정도 받으면 사탐 높1이랑 비슷해지나요?
-
수리논술ㅋㅋ 1
기하 오늘 시작할 예정인데 한양대 가능한 부분? 올해 수능 미적은93점임.
-
너네 아직도 협상 중이잖아 원딜 바이퍼 잖아 피넛제카딜라이트 있잖아 제발
-
한문제 풀면 맞췄나? 틀렸나? 너무 궁금해서 채점병 도져요… 이 습관도 고쳐야할텐딩…힝…
-
얼버기 11
행복한꿈을 꿨어요
-
올해 수능을 바탕으로 내년을 예측한다? 논리적으로 보일수는 있겠지 근데 거의 맞추는...
-
실패자가 대다수이다 국잘 수망 탐잘 국잘 수잘 탐망 조합으로 대부분 복학 예정이다
-
이거에 따라 대학이 바뀔 수도...
-
수능 치기 일주일전엔 더 이상은 못해 ㅅㅂ 이런 상태였었는데 수능 끝나고 슬금슬금...
-
나도 팔로워가 쭉쭉 오르겠지 26년도수능은 내꺼다 !
-
아 그때를 위해 열심히 피를 뽑겠다...
-
제곧내
-
상단 번호만 잘 나와있는지만 보게 시키던데 ㅋㅋㅋㅋ 사실 국어는 파본검사 안해서 더...
-
무슨 사탐 얘기만듣고 개ㅈ밥과목인줄 알고(맞긴함) 저능아과목 나정도면 1등급...
-
예를 들어 닉네임이 호타로 이면 진짜로 짤남같이 생김
-
면접 보러 오라고 하시는데 이런 거 첨이라서.. 이번 수능 영어 94점이긴 한데...
-
왕
-
좋은 아침입니다 6
-
내년에 물1 할거임
-
표본분석 스나 하는 법 내가 이해한게 맞나 좀 봐주실분 2
진학사에서 그 모의지원 메뉴 들어가서 내 위로 깔려있는놈들이 여기 말고 어디...
-
대학 라인 0
과 상관없이 대학라인 어디까지 가능한가요…ㅜㅜ
-
수능을 그리 잘 보진 못해서 닉값은 정시로 못할 것 같아요 수시로는 할 수...
-
트럼프당선과 함께 보호무역주의가 가속화되고(관세폭탄, 이차전지 ira폐지, 반도체...
-
실전 30분안에 당황안타고 아는거 다 보여주는게 얼마나 빡센건지 다시한번느낌ㅋㅋ...
-
19일 뭐 업뎃 된다 했던거 같은데 뭐였음?
-
재수 성공 2
재수 성공의 기준이 뭐라고 생각하시나요?
-
과탐이나 사탐이나 다 똑같은 듯 그나마 괜찮은 곳은 투과목이나 지리, 역사 라고 봄...
-
국어 : 밑에 페이지 숫자만 확인시킴 나머지 : 안함 감독관들 지침좀 제발 제대로 읽고 왔으면 ㅠㅠ
-
설수리 가고싶다 0
ㅜㅜ
-
이감 5
이 책 내년도에 풀어도 상관없나요? 연계 때문에 되나 궁금하네요
12345154321
ㄷㄷ 맞았어요 쉬우셨나보네요
12345154321
이과수능21번이 이난이도라면 정확히 1분 30초컷할듯
이과수능에는 비교못할거같아요.. ㅋㅋㅋㅋ
(x-sqrt(2))^2(x+sqrt(2))^2 인가요
문과 문제로도 난이도가 높진 않아보여요
나 조건 근데 사실상 -2랑 2값을 준거나 다름없어서... 아쉽긴 했는데 문젠 괜찮아요 ㅋㅋ
첨엔 -2랑 2로줬다가 표현만바꿔봤어요 ㅋㅋㅋㅋ 별의민없지만.. 감사합니당
근데 엄밀히 말하면 이 문젠 오류가 있어요
-2와 2일 때 "서로 다른" x의 개수가 3이에요
중근이라...
g (t)=3인 t가 -2, 0, 2이고 그 중 최대최소가 -2와 2란 뜻이었는데.. 중근은 x=쁠마루트2 말씀하신건가요?
아뇨 아뇨 ㅋㅋ 저건 실근의 개수가 되는데 극값에선 실근이 중근을 가지니까 나 조건도 x의 개수가 4가 돼서...
V표한 부분이요
아항 "서로다른"을 넣어 표현하는게 훨씬 낫겠네요.. 피드백 감사합니다!
서로 다른이란 말이 없으면 문제 오류예요
그래프로 생각하면 중근을 가진다고 x가 두번 카운트되진 않는거같은데.. 그런 조건을 가진 기출문제가 있었나요..?
실근의 개수이기 때문에 "서로다른"이 붙어야돼요 ㅋㅋ x^2=0의 실근이 2개이듯...
한 예로 16학년도 6월 나형 17번 문제도 서로다른 이라는 조건이 붙어 있어요
뭔가 따지듯이 댓글을 달았는데 그런 건 절대 아닙니당 ㅋㅋㅋ
아 넵! ㅋㅋㅋㅋ 근데 x^2의 실근이 2개라는 거 한번만 다시 설명해주실 수 있으신가여?
x^2=0의 실근은 0과 0이에요
그래서 서로 다른 이란 말이 없으면 실근의 개수는 2에요
문제 찾아보니까 확실히 그러네요! 지적 감사해요 ㅎㅎ
실근개수부분이 정확히 개념이 안박혔었나봐요ㅠㅜ 신경써야겠네용
그냥 집합으로 바꿔야겠네요.. S={×|f (x)=f (t)} 이런식으로..
그냥 "서로다른"만 붙이는 게 깔끔할 것 같아요 ㅋㅋ 그렇게 하셔도 좋구요 ㅋㅋ 아무래도 저도 문젤 만들고있다보니까 이런 게 보이네요 ㅋㅋㅋ
ㄷㄷ 올리신문제들 퀄이 좋으시네요.. 호평도많고.. ! 나중에 문제 또올릴거같은데 그때도 풀어주시면 감사하겠습니다 ㅎㅎ
넵 기대할게요!
1번....?ㅠㅠㅠㅠㅠ수학고자라서..
넵 맞아용 ㅋㅋㅋ 굿굿
여담이지만 그냥 숫자를 쓰실 때에도 수식으로 쓰시는게 더 자연스럽..
오.. 출제경력 있으신가봐요! 첫째줄에 0이 거슬리네요ㅠㅠ ㅋㅋㅋㅋ