이데아(다른세계) 존재증명 평가좀 부탁드립니다 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2배속으로라도 강e분 들을까요? 혼자 정리하려 했는데 분량이 너무 많아서..
-
오늘도 파이팅. 몸관리 잘하자.
-
다들 차렷. 1
학원으로 갓! 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘
-
얼리버드 기상. 5
-
조이는 보이가!
-
얼버기 3
D-8
-
킬캠 10점이 뭔데 씹덕아
-
이감 중요도 c 0
C에도 없는 작품은 안봐도 되겠지..?? 중요도에 아예없는작품 나온적 있나
-
clothing20snu 대성 커피 먹구가 ~~ ⸝⸝> ̫ <⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
얼버기 3
D-8 화이팅!!!!
-
늦버잠 2
어차피 내일 오후 수업이라 괜차늠 ㅋㅋ
-
진짜 고능하네.....
-
시험지 꺼내거나 파본검사할 때 눈풀하면 부정행위인가요
-
현실적으로 1
화미생지 기준으로 96 96 2 89 89 면 어디 적정라인임? 이과기준으로
-
30만원 그대로 깨지겠네 제발 내일 학교에서 나의찾기 신호 떠라
-
탐이나요
-
1. 아잉은 무조건 중급이나 고급으로 들어라. 초급반에 간다는 것은 고려대생으로써의...
-
그 때가 재밌었는데.. 오랜만에 우연히 차영진t 해설강의 듣는데 다시 공부하고...
-
보통 그냥 감이죠?
-
ㅅㅂ ..
-
아 슈발 에어팟 2
잃어버렸네 ㅈ같다 진짜
-
크크루삥뽕
-
시간 ㅈㄴ빠르네
-
다 끝냈는데 혹시 짧게 끝낼수 있는 언매 문제지 있으면 추천해주시겠어요??
-
이상하게 취향은 아니네
-
...
-
이거 이기면 뭐 주나? 노벨상? 주제궁금하면물어보세
-
정답이2222ㄷㄷ
-
나도 질문 받아볼까 29
국어 원툴 24언매 표점 145 백분위 100
-
아직 반팔입어도 되겠군
-
살인마들은 그냥 유전적버그가 나버린 일종의 오류 생명체 이지 않을까 신기해..
-
ㅇㅇ… 그냥 길이만 긴 일개 고전시가 1인데 사실 문제를 어떻게 내냐에 달린 거지...
-
반 알로는 택도 없네 12
앞으로 잠 안 오면 한 알 그냥 먹어야지....
-
이 정도면 걍 겨울 아님? ㅋㅋㅋㅋㅋ
-
분석할 수 있는 역량은 나름 괜찮은 것 같은데 타임어택에 항상 약한 게 문제네..
-
바로 자야지
-
올해 진짜 왤케 뭔가 애매하지... 이거다 싶은게 진짜 하나도 없네요
-
옛날에 내가 대충 휘갈겨서 막 냈었는데 승인된 레어들 다시 보니까 반가우면서...
-
본인 가끔씩 잠 안오면 유튜브에 박승동 강의 틀어놓고 잘 때 있음. 학교선생님 그...
-
현우진 차영진 호훈도 인정한 Goat.
-
덕코 어케 버는 거더라
-
하긴 해야하니까...
-
191130 정도의 문제는 미적 30에 나올 수 있을까요? 9
그래도 어렵나
-
재수 수능 조지고 논술 다 광탈해서 삼수 확정났을때쯤 인기 많았던 노래라 한동안 이...
-
아무나
-
이거 5개 다틀리면 낮4부터 시작임
-
고3때는 분명 고대 바의공 성대 글바메만 가도 좋겠다 이랬는데 ㅠㅠ
-
웅웅
하루종일 그런 생각하면 엄청 힘들지 않음?
제가 머리가 나빠서 힘들어요
어그로 goat
현실에 없으면 다른세계에 있다는 명제 자체가 참거짓을 판별할수가 없음
그 명제를 님이 참이라고 가정한거면 딱히 틀린말은 아니긴한데 그게 참인지 거짓인지가 존재증명에서 가장 중요한 부분이기때문에 의미없는 논변임
현실에 없으면->다른세계에 있다 는 p->q를 not p or q라고 바꿀수 있어서 현실에 있거나 or 다른세계에 있다. 여기서 앞부분이 참이면 참이되져ㅛ
애초에 현실에 있다 or 없다라는 명제는 p or ~p로 가능하지만 현실에 없다 -> 다른세계에 있다라는 명제는
~p -> q로 둘은 인과적으로 전혀 연결되지가 않음
현실에도 없고 다른세계에도 없는 not p & not q 라는 반례가 존재할수있다는점에서 끝난거임
다른세계 가보셨음?
그래서 양상으로 말한거잖음. 가능성이 있다고 ㅇㅇ
애초에 님 논리가 걍 수많은 가능세계중 하나 꼽아서 그걸 일반화 시키는건데
죄송합니다 저머리가 멍청해서 제대로 말을못하겠네요
글쓴이분은 연언 명제의 참/거짓과 연언 명제를 구성하는 개별 명제들의 참/거짓을 구분하지 못했습니다. 2번이 참이 되면 1,3이 참이 됨은 맞는 말이고, 5번이 참이 되면 4,6이 참이 됨은 맞는 말이지만, 이는 'p-->q' 라는 형식의 연언 명제가 참이라는 의미이지, 구성 명제인 p,q가 참임을 보장해 주는 것은 아닙니다. 단적으로 p,q 의 진리치가 모두 F 이더라도 연언 명제 p-->q 의 진리치는 참이 되니까요.
공허참도 참아닌가요
연언명제가 참이면 그 연언명제가 참아닌가요?
예를들어
4.현실에 있으면->다른세계에 없다
가 참이라고 한다면
이 4번이 참아닌가요?
공허참이라도 명제자체는 참이라고 생각함