미분가능과 도함수연속성
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
ㅋㅋㅋ
-
다자녀 아닌 외동 기준 고교 출결 만점 봉사 64시간 or 헌혈 8번...
-
수1 수2 미적 다 한꺼번에 진행해도 되려나요??? 아니면 수1 수2 미적을 차례로...
-
고속 2
화작 63점 확통 80점 영어4 한지 35점 세지 37점 고속 대신 돌려주실 천사분...
-
대성 마이맥 인강 재생이 안 되는데 해결방법 아시는 분 ㅜㅜ 재생버튼 누르면...
-
컷이 너무 살벌하다
-
잘봤습니다~~~~
-
패드립하고싶었어 그마음안다…
-
설마 불국어 불수학을 같이 내진 않겠지? ㅠㅠ
-
싸운다고 안바뀝니다 그시간에 롤이나 한판 더합시다
-
가둬놓고나만보게하기
-
ㄹㅇ 수능이 늦게나오니까 수시도 늦게나오잖음;;
-
내가 새가슴에 독해력 ㅂㅅ인것도 문제지만....... 압도적인 실력을 쌓으면 분명...
-
띠따띠라따또따는 개별로임
-
ㅋㅋ
-
님들 원래 수시에서 재수생보다 현역을 더 많이 뽑음?? 4
걍 나이에 상관없이 생기부 좋은 사람 뽑는거 아닌가요…?
-
안녕하세요, 중계동에서 공부방을 하는 수학강사 입니다. 이번 수능부터 다시...
-
뭐 있음?
-
너무 귀엽죠 ㅠㅠ
-
지금 텔그 2
지금 텔그에서 약펑크? 로 62퍼 가능성 뜨는데 이거 나중에 가면 그냥 안되겠죠?...
-
뽑는 기준이 진짜 지맘대로네
-
통계상 그리나온다는건 할말없지만 진짜 수능판 갈때까지 가버린게 맞음
-
국어때문에 그렇다는 말이 있는데 언매 97점 기준 백분위/표점 메가랑 비슷하지...
-
님들 수시 성대 공학계열 종합 예비 많이 도나요?? 1
일반고 내신 1.79에 생기부는 1학년때부터 계속 공학으로 유지했어여 수학은...
-
칸타타님은 미적 88 6퍼라 했다가 고아소리 들으시네 11
22수능에서 홀로 88을 외칠 때 얼마나 힘드셨을지 알겠다
-
전자고 후자는 문제수준은 후자가 더 어렵지 않음? 처음 딱 봣을때 신선한 충격으로...
-
24 6모 46(10분 컷) 24 9모 50 24 수능 47 25 6모 48 25...
-
과탐 커트라인 3
생1 1컷 44 지1 2컷 39 둘 중 하나는 안되려나 아 ㅋㅋㅋ
-
공부든 뭐든 암거나
-
맛점하세요 0
냠
-
인간시대의 끝이 도래했다
-
자살하게해주세요
-
고사실이 좀 후텁지근했는데 친절한 국어 감독관님이 환기시켜주심. 책상은 유리판 씌운...
-
점메추해주세여 6
-
ㅈㄱㄴ
-
돌려주시는분 대학 꼭 원하는곳 가시길!
-
수면패턴 망한 2
ㅜㅜㅜ
-
69+22 1 안되나요 하.. 면접이 손에 안잡힘 ㅆㅂ
-
전글 정답 2
계속 뻐기고 있으면 어차피 위상수학 이미 들으신 분이 와서 5000덕 가져갈 게...
-
실채떠도 써볼만함?
-
내년에 수리논술보려고하는데 기하랑 확통도 해야하나요 미적만 하기에도 바쁠것같은데요ㅠㅜ
-
우울해짐 0
지금 생윤 31점..메가 기준 딱 3컷인데 결국은 4뜬다고...
-
숨막힌다 2
여기서 대입얘기 보고있으면…..
-
보니까 올해 6모랑 수능이랑 선택과목 평균은 거의 똑같고 공통에서 6점 정도...
-
그 정시접수는 온라인으로 하는거 아닌가? 어떤식으로 되는지 감이 안잡히네 학교가서 쓰는거임뭐임?
-
김범준 현우진 0
예비 고3이고 이번수능 공통 15 20 22 틀렸는데 김범준 따라갈만한가요??둘중...
-
물리 생멱 1
대학다니면서 재수할껀데 공대다니는데 내신때 화생지를했거든요 근데 공대갈껀데 물리를...
-
작년 한양대 수리논술 쉬운편이었나요?? 오전거푸는데 어렵다고 소문난거에비해 너무...
-
언매 94-97점 분들 메가 백분위 표점 어떻게 나오나요? 5
저는 공통 언매 1틀 96이고 133/98 이네요 어디까지가 98컷일지 궁금해서 여쭤봅니다
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=