회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능 2등급 lets go
-
성장형 인재 0
가 되고 싶어요
-
쿠팡은 잘 잡힐줄 알았는데
-
Mbti를 모르는 상태에서 괜찮다고 느끼는 사람들은 어째 다 인팁 인프피임ㅋㅋㅋ...
-
부처의 눈에는 부처만이 보이고 금수의 눈에는 금수만이 보입니다 이하생략....
-
내려갈일은 없을거 같은데
-
기생집 4점 하는중인데… 내년엔 모하지~ 추천좀여
-
6평까지만해도 교사 출제 가지고 다들 평가원 욕 했는데 수능되니까 조용하네
-
제시문 [가]를 세칸 말고 한 칸에 작성하면 감점되나요ㅠ? 칸이 부족해서 동국대에서...
-
기하 권하는 사람이 많네요 기하는 표점 낮지 않나요?? 뭔지 잘 몰라서….
-
상관없나요? 곧 졸업하는 고3이고 내년에 수능 봅니다 종치고 2분뒤에 들어와서 출석...
-
대학 라인좀 0
언매 미적 영어 물1 지1 기준으로 백분위 93 93 1 93 93이면 대학...
-
귀여워요..
-
차이가 뭐죠..????
-
진짜 미쳐버릴것같아요 국어 15번까지는 가채점 쓰고 16-45는 못써서 복기로...
-
고등학교때 학원 안가고 영어단어도 안외웠는데 1등급 그냥 나옴..남는시간에 다른공부...
-
왜 꼭 내가 맞춘 문제는 이의제기 들어오고 내가 틀린 문제는 이의제기 안들어옴??
-
국어 비문학 공부할때 오답만 하면 안된다는데 도대체 뭘 하라는건지 모르겠어요.....
-
마음이 어수선합니다
-
다른건 몰라도 반수생 장수생 태그는 왜 없앴을까요..
-
어제도 오늘도 한 6시간 자니까 눈이 떠져버리네요ㅜㅜ
-
나는 왜 늦게 태어나서 이런 꿀통을 못 보는 거냐 ㅠㅠ
-
생각보다 잘 안걸리는데 보통 몇번만에 걸리심?? 확정문자
-
저출산 때문에 나라 쳐망해가는데 허구한 날 명품백 받았니 마니만 몇년째 얘기하고...
-
얼버기 4
안녕하세요
-
얼?버기 2
-
이번 수능언매 40번에 5번 찍어서 틀린 사람입니다. 4번은 방송 출연자가...
-
따뜻한 우동먹고싶다 따뜻한 쌀국수먹고싶다 따뜻한 붕어빵먹고싶다 따뜻한 호떡먹고싶다
-
현역 때 떨어지고 수시 재수로 다시 지원하면 무조건 떨어짐?
-
늦게일어도려해도 안되는..
-
고대 내신 반영전형도 그렇고 손해 볼 내신은 아닌 겅가요? 그냥 지방 일반고임요
-
현정훈 물2 3
라이브 개강하나요? 현역이라 재종 못 들어가요 라이브 개강 안 하면 그냥 지2하려고 함...
-
진심으로.. 안먹으면 머리아픔
-
한시간 잤는데도 어질어질하고 내 생각과 행동 사이에 딜레이가 있는 것 같음...
-
고3이라 정시에 대한 정보가 없어서 여쭈어봅니다..
-
궁금합니다
-
문과입니다...그리고 지금 예비고3 메가패스 해놓은 상태인데 환불하면 전액 환불 가능한건가요?
-
얼버기 4
수면 패턴의 정상화
-
ㅈㄱㄴ
-
기상 완료 오늘도 ㅍㅇㅌ
-
가슴 찢어질거같네...ㅋㅋㅋ
-
저는 정시파이터이고 모고는 국어 5에서 높3으로 올렸고 수학은 3,4 왔다갔다 하고...
-
대부분 메가측정되엇던거에서 떨어지나요?.. 올라가는 경우는 없나요 국어...
-
설의 1
언매 미적 물2 지2로 내신 cc이면 정시일반전형으로 합격 불가능한가요?
-
그 자리에서 말하면 부정행위 처리됐었나?
-
(백분위) 언매 96 미적 96 영어1 물리 96 화학 98이요… 지금 거의 모든...
-
낮 22도 어디갔노
-
혼자한거긴 한데 논술복기한거 여기다가 올려도 될지 모르겠고 걍 내가 풀고 온거...
속함수를 생각해서 적분할때 -를 붙여야하는데
그런합성함수적 적분은 수2에서 안돼서?
Eㅔ?
말그대로 교육과정에 없어요
n의 값에 따라 다 전개시켜버리면 가능은 하겠지만 저걸 통째로 적분하려면
미적분 내용을 알아야함
어차피 전개 안하면 적분 못시키지 않아? 계수 음수랑 무슨 상관,,,,,,,,
미적분에선 가능하답니다 ^^
아니 어차피 저 괄호 안에 머가 있든 전개해서 적분할거 아냐¿
근데 음수랑 무슨 삭관잋잇어ㅓㅓ ㅠㅠ
ㄴㄴ 미적에선 저런식 정도는 전개안하고 그냥 x^n처럼 간주하고 스트레이트로 가능해...
수2도 평행이동 관점으로 보면 가능?은 할듯
평가원도 그냥 내는 느낌이고...
샹 저건 미적이 아냐 수2라고... 잨구 미적야기 ㄴㄴ 수이면
저걸 다 전갸하는 방벚박게 엊ㅇ서?
걍 그런갑다하고 넘겨 몰라도돼 통통이들은...ㅋㅋ
샤발 그럼 쟬ㄹ 적분을 안하면 어캐 푸능ㄷ대애ㅔ
수2에선 안나오지 그러니까 애초에 수2 과정에선 불가능하니까...ㅋㅋ
만약 나와도 n이 구체적인 자연수로 나오고 다 전개때려서 풀어야겠징
저거 문제가ㅇ 엔 1부터 10까지 대입해서 더하란건데
그럼 십제곱을 하라는거야,,,,,?
이고 합성함수 적분할줄 알아여함
그게 몬데 ㅠㅠㅠㅠ
그런데 (-1)ⁿ(x-1)ⁿ 얘도 안되나
+평행이동
근데 n값 홀짝에 따라 케이스 나눠서 노가다하면 수2에서 가능할 것 같긴 한데 ㅋㅋㅋ
참고 f(g(x))=f'(g(x))g'(x)
끄아아악,,,, 그럼 쟬ㄹ 적분을 못한단ㄴ건가요¿
저거 적분하라는게 문젠데 저걸 적분 안하고 어캐푸러요 ㅠㅠ
그으러게요 치환도 못쓰지않나
저거 n 1부터 10까지 값 더하는게 문젠데
그럼 십제곱을 하라는건가요 ㅜㅜ?
기하라우럭어
적분구간이 [0,1]이니까 거기서는 -x+1>=0이고
지수법칙 써서 (-x+1)ⁿ=(-1)ⁿ(x-1)ⁿ으로 쪼개면
(-1)ⁿ×(2/n)×int(0 to 1)(x-1)ⁿdx
=(-1)ⁿ×(2/n)×[((1/(n+1)×(x-1)^(n+1))](0 to 1)
이렇게 바꿔볼수있을거같은데
해볼법하긴 한데 굳이 이런거까지 물어봐야 하나 싶음
-1만큼 평행이동해서 -1부터 0까지 (-x)^n 적분으로 바꿔놓고
홀짝 나눠서 적분하면 될듯?
우지니가 저 구간에서 -x+1과 적분값이 같지만
식이 다른 x^n을 대신 넣고 풀으라는데
이렇게 바꿔치기 해버려도 문재가 없나요,,,,?
그려보면 맞긴 한데...
수2에서 식으로 증명이 되나...?
윗분 댓글처럼 식 조작하고 풀어야되는게 맞는데 수2에선
저거 굳이 알아야할까 싶음 저런 문제는 안나올 거 같은데 ㅋㅋㅋ...
그냥 알아만두고 넘겨도될듯
피적분함수를 적분구간 중심축에 대해 대칭시켜서 적분하면 되긴 하는데 이걸 수2 범위 안에 든다고 볼수 있을지 모르겠네
이게 딱 우지니쌤이 말한건데
이분들 반응보니 좀 에바스러운 문제같아보이네요,,
걍 넘길까..
근데 이런 적분 테크닉은 직접적으로 물어보진 않아도 계산할때 간접적으로 도움되는게 많아서 그냥 아~ 이런게 있구나 알아만 두시고
나중에 문제풀다가 어? 이거 함 써볼 수 있을 것 같은데? 이렇게 딱 보이면 써보면서 체화하고 이러면 충분할것같음
저건 미적에서도 지엽적인거라 억지로 외우고 체화시킬 필요까진 없을듯 그냥 정적분에 대한 관점과 시야를 넓히고 가는것에 의의를 둬도 충분할것같음
ㅠㅠ 감사합니당 그렇게 할게용,,,,
일케하묜 수2범위에서 할 수 있지 않을까뇨?
님 그냥 덕코망령인줄 알았는데
꽤나 똑똑한 당근덕후였네요
라유 좃고수네 사실 sec 식 조작할 때부터 알아보긴했어
원함수를 미분했을 때 저 인테그랄 안에 있는 식이 나온다고 생각해봐여 거꾸로하면 합성함수 미분이라서 수2내용에 없어서 그럼
이게 수2 범위 밖에 있는 내용....합성함수 적분은 우리가 알 수 없습니다....
대칭으로 보면 안되나요?
평가원은 절대 저렇게 안 낼듯
저거 안쓰고도 충분히 변별 가능한데 굳이 저런걸 써서 안그래도 표점차때문에 욕먹는 선택과목 간 유불리를 이건 걍 미적 몰아주기 수준이라서 공통엔 안나올거 같아요
감사합니다 저렇게 나오면 절대 못풀거가타요 ㅠ
저건 엄밀히 설명하려면 미적 내용일건데
변곡점이랑 합성함수는 조금만 뒤지면 미적범위인데도 공통에서 은근은근 나와서 알게모르게 계속 알게되었던 느낌..