[이동훈t] 기출로 기출 풀기 (241128) 미적분
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이제 현역되는 고2인데 수학땜에 고민입니다.이번 모의수능에서 22.28.29.30...
-
근데 요즘 FM 악습이라고 잘 안 시킴 ㅠㅠ 학생회는 자주 함 무적해병 화이팅...
-
국어가 조금 애매해서 ㅠㅠ
-
이거 아니었으면 3합 4 확정으로 발뻗잠 하는 건데 하.. 가채점표만 잘못 옮긴...
-
99점...
-
차단 해야지 2
1년 만에 차단.
-
에이 씨발 재수해서 간 고려댄데 삼수망해서 삼수고려대됐는데 좆같네 진짜 사수...
-
대학 못감 0
앙 기모띠
-
N제에서도 못볼정도로 어려웟나
-
명문대 옯붕이들에게 차은우의 껍데기를 줄테니 초졸로 살라고 하면 다들 바꿀수있을까
-
뉴런은 23, 24 때 들어서 심특 들으려다가 김범준도 좋다던데
-
담임쌤 피셜 2
이번에 대구지역 수능 가채점 결과 보니까 애들 최저 충족률 상태가 말이 아니다
-
고속 1
고속 대신 돌려주실분 계시나요? 경기권,지거국 원점수기준 화작 63 확통 80 영어...
-
올해 수능(국수영 사과탐)이 2~3년 전보다 쉬운게 맞나요? 1
언론 분석 보니 그렇다고들 해서요. 특히 수학 과학은 예년 2~3년전보다 절대적인...
-
고속성장 소신 1
소신(노란색~연한 초록색) 정도면 써볼만한 가능성인가요? 건동홍은 적정이고 성대,...
-
지인들 커피 한 잔씩 돌리고 강제로 풀게 시키는중 ㅋㅋ 일단 2025학년도 수능 친...
-
착하게 살게요 ㅠ
-
이 시험이 어떻게 1컷 47… 세상이 날 두고 몰카를 하나
-
ㅇㅇ 외적으로 전혀 안끌림 전애인은 처음 만났을때부터 느좋이었는데 이번엔전혀 그런...
-
일단 가지고 있는게 좋겠죠?? ㄹㅇ 짐정리 하다가 버릴뻔
-
오른 만큼 내려가고 내린 만큼 오르는 듯
-
어쩌자는거임
-
대구경북 지역인재 있는데 혹시 어느 정도까지 가능할까여 라인 봐주실 분 계신가요
-
도서관이 좋아요 0
편안해짐 기분이
-
어떻게 신청하는 걸까요?
-
맞팔ㄱㄱ 8
대신 똥글을 견디셔야합니다
-
어차피 다시 반수할 것 같긴 한데 옮기는 건 굳이인가요?
-
텔그업뎃됨 3
연의 99% 좀 빨리 갖다 치워주세요
-
진학사 업데이트 0
5시쯤 되겠죠?
-
나이 먹을수록 뭐든 더 어려워지냐,,,
-
수능도 끝났는데 카르시온 가셔야지 ㅋㅋ
-
어느게 더 어려웠을까요?
-
수학 n제 4
기출 풀고 n제 들어가려는데 1후 2초가 풀기 좋은 n제 뭐가 있을까요?
-
좋은건가요? 국어를 ㅅ망쳤는데 탐구는 ㄱㅊ게 나와서…
-
요즘ai땜에 취업길 막막한데 초등교육과 들어갈까요 3학년까지 다님
-
재수 예정이고 사탐런 하려는데 둘중에 뭐할까요?? 사문은 무조건 하려고 했는데...
-
서울대 연세대 성균관대 고려대 한양대 경희대 이화여대 서강대 동국대 건국대/중앙대...
-
심지어 잘 봄 하...
-
생명 비유전 엄청 빨리 풀어내는, 실전컨셉의 전자책 같이 집필하실분 계신가용 수익...
-
난 물1 생1 중딩때무터 통과하면서 역학 재밌게 했었는데……..
-
영어 개년 0
영어기출 몇개년까지 보는게 좋나요?
-
홍콩을 가봤다는 사실을 깨달았다
-
수능수학20번문제 전원정답처리 해야하는거 아닌가요?(제 뇌피셜) 6
조건으로" 실수전체에서 정의된 f(x)" 가 나와있는데 이거랑 구하는거 보고 애초에...
-
어떻게 풀어야하나요
-
저격당했네;;
-
안 그래도 탐구 창났는데 여기서 영어도 2 떴으면 진짜 그냥 복학했을 듯
-
생각보다 이슈가 없는거 보면 우리나라 입시를 주도하고 여론을 주도하는...
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545