26살에 재종반 수학 대표강사, 3년 간 30년 치 기출문제 폐관 수련 후기 2탄
1탄은
안녕하세요. 반갑습니다. 오르비 아이디에 등록한 전화번호를 개인적으로 사용할 수 없게되어 탈퇴했는데... 탈퇴하고나니 댓글이 많더라고요. 암살 당한것은 아닙니다. ㅎㅎ
2탄 시작합니다.
=====================================================================
[해설지가 뭐 이래...? 해설이 아니라 계산지 아닌가....? (feat. 수능 13번)]
2024학년도 수능 13번
도형 문제의 풀이는 연역적으로 풀지 않으면 항상 헤매게 되는 문제입니다. 그 이유는 기하에는 왕도가 없기 때문이죠?ㅎㅎ 운이 좋으면 풀리고 운이 안좋으면 안풀리고, 잘 보이는 날은 풀리고 잘 안보이는 날은 안풀리고...
그런데 수능 문제를 이런식으로 출제하지는 않겠죠? 운이 좋으면 풀 수 있있고 그렇지 않으면 풀 수 없는? 평가원에서 정해놓은 성취기준은 그런 것일리가 없습니다.
EBS의 해설을 보겠습니다.
갑자기 선분AC의 길이를 구합니다. 왤까요? 이 해설지는 사실 '해설'이 아닙니다. 문제를 해설하고 있는 것이 아니라 답을 향해 가는 풀이 또는 계산집이죠. 사실 선분AC의 길이를 구해야하는 이유를 설명하고 구하기 시작해야하는데 그냥 대뜸 구해버립니다. 그리고나서
S1을 구하고
Sin(각ACD)도 구하고, R도 구하고...
즉, 선분AC의 길이, Sin(각ADC), R을 모두 구해서 답을 냅니다. 이것은 아마도 답을 내는 과정이나 계획을 모두 다 마친 상태에서 연산하는 단계만 서술한 것이라고 보이는데... 그래도 조금 많이 이상합니다. 만약 둘다 구해야한다면 꼭 저런 모양(분자에 R 분모에 사인값)으로 구하라고 해야 했을까요?
다시 풀어 보겠습니다.
문제만 먼저 보면 원이 있고 그 안에 내접하는 삼각형이 있고 그 삼각형과 변 AC를 공유하는 각A가 60도인 삼각형이 있습니다.
맞나요? 고개가 끄덕여지시나요?
고개가 끄덕여 지면 논리가 꼬이기 시작합니다. 그 이유는 그림만 보고 나름대로 도형을 정의 했기 때문입니다.
이렇게 나름대로 정의 하면 작도하는 순서가 달라져서논리가 깨질 수 있습니다. 아마.. 헤매기 시작하겠죠?
문제 풀이의
첫번째는
문제 읽기 단계입니다.
도형 문제에서는 무엇보다 문제가 중요합니다. 그 이유는 도형이 어떤 순서로 정의 되었는가에 따라 구할 수 있는 것들이 결정되기 때문입니다.
이 문제는 처음에 사각형이 있습니다. 그 안에 대각선이 생겨 두 삼각형이 생깁니다. 그리고 그 중 하나의 삼각형의 외접원이 그려진 것입니다. 이해가 되시나요?
(아마 도형문제를 그림 먼저 보고 풀다가 안풀려서 문제 읽었더니 풀리던, 이런 경험있죠?)
두번째는
문제 설계 단계입니다.
1) 무엇을 물어 보았는가?
2) 단서를 이용한 조건의 해석
- 조건을 만족하는 식을 구합니다.
- 우선 S_2는 주어진 단서와 구하는 것을 보고 넓이를 나타내려고 한다면 선분AD*선분CD*Sin(각ADC)로 구하겠죠?
- 그리고 S_1을 구해야하는데 각과 길이 두개가 주어져 있으니 선분AC를 구해서 넓이를 구하면 되겠습니다. 이제 드디어 길이 AC를 구해야하지요.
(그전에 길이 AC를 구하는 것은 이상하죠? 만약에 주어진 정보만 가지고 아무 방향을 잡지 않고 구한다면, 길이 AC만 구하는 것은 이상합니다. 각과 길이 두개를 가지고 다른 각을 구할 수도 있는데 나머지 길이만 구한다고요?)
- 그럼 이제 조건을 표현해보면
- 일때,
를 구해야 합니다.
3) 이제 답을 내는 연산을 합니다. 조건을 해석했으니 이를 이용하여, 구해야하는 것을 재구성 해볼까요?
- R은 위에 구했던 선분AC와 각ADC로 찾을 수 있겠네요.
-
이므로 구해야하는 것은
이렇게 답을 내겠죠?
세번째는
답을 확인하는 단계입니다.
방법은 여러가지가 있습니다. 풀이를 역연산 해본다거나, 나온 답의 각과 길이를 이용하여 주어진 정보나 조건과 같은가 확인해 볼 수도 있겠습니다. 또한 다른 풀이를 찾아볼 수도 있습니다. 이 과정에서는 EBS의 풀이처럼 반지름을 구해서 역으로 확인할 수도 있을것입니다.
답지를 보기전에 이미 내가 맞았는가 틀렸는가를 알 수 있어야 시험장에서 만점을 받을 수 있습니다.
풀이를 다 하고 보면 단 한 번의 연산도 허투루 하지 않았습니다.
우리가 다양한 풀이를 추구하는 것도 좋은 공부겠지만 문제 출제의 의도에 맞게 풀이를 해야 과한 연산을 줄일 수 있을 것입니다.
논리적으로 풀고, 해야하는 기본적인 연산을 연습하는 것이
계산량을 줄이려고 새로운 공식을 늘이는 것보다 훨씬 더 유리하지 않을까요?
문제 풀기 전에 설계를 하고 풀이를 시작해봅시다.
문제풀이의 시간은 아마도...
생각하는 시간 | 계산하는 시간 |
1 | 9 |
2 | 7 |
3 | 3 |
문제를 어떻게 푸시겠습니까?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뻥임뇨
-
모교 연애썰 9
여고에 그런 게 있겠냐? 난 있을 줄 알았는데 역시나 없더라
-
구라고 OMR 이거 인식 되냐냐 이거보다는 화이트 제대로 칠해진거 같은데
-
인서울 도전 해보려는 노베들에게, 실패한 삼수생이. 0
생각좀 정리해보자 하며 쓴 일기장이 혹시 도움이 될까봐, 그리고 나도 도움을...
-
아 연애하고싶다 3
그냥 학교 동방에서 보이는 사람들한테 죄다 고백해볼까 수시원서 넣듯이 6명한테만
-
수학 65점 싷모 보면 88-92였는데 그냥 죽을까 작년보다 못봤어요
-
일세카도 거의 오토오토만 돌린거임
-
덕코 주시오 2
주세요
-
거짓말을 안해도되는게 너무 편함뇨..
-
서울대 수리과학부 목표이고 언매 91 미적 100 영어 80 물2 44 화2...
-
춘식쌤 조교하고 싶은데… 재수도 해야겠고…
-
2024 모의논술인데 범위도 안잡고 0에 가?까?운??? 저거 모의아니고...
-
확통 기하 노베긴 해요 내신때는 했는데
-
어렵지 그랬어 15번이 너무 쉬웠다 참
-
ㅇㄸ요?? 라이브로 들어야할 거 같은데 ㄱㅊ나여
-
성탄절 계획 4
-
중고딩때 연애썰 6
-
공통 4점짜리 대부분 못풀고 미적은 2년전에 한 번 해봄 내년엔 대학 꼭 가고...
-
스펙 봐주셈뇨 7
143 30 18 모솔 떡두꺼비처럼 생김 인생 어캄뇨
-
운동이 좋네 2
1시간 빡세게 하고 오니까 운동에 모든 집중력을 쏟을 수 있어서 딴 생각을 안하게...
-
성대 다군 탐구 1개 빼면 비벼볼만 한 거 같은데 올해 터질거 같다는 말도 들리고 해서 ..
-
수능까지망해서 진짜죽고싶음뇨
-
강사만 너무 믿지마셈.. 지금은 찍먹해도 괜찮음 제발 ㅜㅜ 여러명 듣고...
-
(기?만) 이거 갈 수 있어요? 이거 진짜에요? 이거 갈 수 있어요? 이거 갈 수...
-
지금 계속 들낙하니 스트레스만 쌓여서... 그냥 무시하구 살려구요
-
보통 얼마임?
-
이미 여자친구가 있는걸><
-
기균도 쓸 수 있긴 한데 그냥 일반 전형으로는 어디 가나요? 기균도 알려주면 땡쿠욤..
-
러닝타임 ㅈㄴ길어
-
머리속을떠나지않아 그만봐야겠음...
-
ㅇ.ㅈ 7
해보고싶었어
-
딥피드수준...진짜
-
사용앱 인증임요 0
네이트로 오르비 함요
-
확인의 과정입니다 알아두세요
-
네
-
컴으로 구글에 박광일 대성 치면 스폰서로 대성마이맥에 ‘개정 수능 국어 이미 준비...
-
아이디 jskim3078 입력해주새요!!
-
1컷 96인건 알고있는데
-
똘똘이좌 글씨체 반응이 좋아 오늘 쓴 글씨체 올려드립니다. 0
최근에는 좀 많이 순화되었습니다. 저 글씨체는 1년 전이구요, :) 이 글씨체는...
-
내년 교대 정시 0
내년 교대 정시 준비 해보려고 하는데 사탐 어느과목으로 하는걸 추천하나요??
-
본인 고백썰 0
걍 서로 누군지만 알고 말도 한 번도 안해봄 사이였음 1년전에 친구랑 친한애여서...
-
언매 86 기하 73 영어 3 동사 42 세사 45 어디라인이라고 볼수있나요?
-
미적 낮4(미적 거의 안 함)인데 2등급 이상 목표면 뭐가 더 낫나요? + 미적이든...
-
원래 26뉴분감을 사려 했는데 25뉴분감 새책 풀커리를 공짜로 얻을 기회가...
-
예비 고2 겨울방학때 들을 문학인강 추천 부탁드립니당 0
문학개념은 어느정도 잡혀있는데 모고 풀때마다 시간이 부족해요 문학 한 번 훑고 고...
-
자이하르! 자이하르! 자이하르! 자이하르!
-
연대 의대가 99 뜨고 있냐 뭔
풀이의 이유를 명확히 제시해주는 선생님이 정말 좋은 선생님이라고 생각해요
그런 점에서 쌤 응원합니다
감사합니다. 행복하세요!
잘 읽었습니다. 요즘 수능에서 준킬러라 불리는 것들은 깊은 개념보다는 빠른 상황해석을 요구하는 경우가 많더라고요. 한번 사고 회로가 꼬이면 10분 이상씩 잡아먹는 게 고민이었는데(어떻게든 풀어내도 딱히 수학 실력이 올랐다는 느낌은 안들더라고요) 방향성을 설정하는 데 도움이 되었습니다 감사합니다. ㅎㅎ
막무가내로 조건들을 수집해서 어떻게든 끼워맞추던 게 제 풀이방식이었거든요 ㅋㅋ 수학 고수들이 문제 풀기 전 먼저 생각을 하라는 게 이런 의미였다니...
도움이 되었다니 기분이 좋네요! ㅎㅎㅎ 문제를 풀이를 시작하기전 풀이 계획을 잡는 것에 고민하는 시간을 길게 가져보면 좋을것 같습니다.
개인적인 질문 드려도 괜찮을까요?
질문이야... 얼마든지요! 답변을 해드릴 수 있는 내용이라면 답변드리겠습니다.
국어강의는 누구 들으셨나요?
으ㅎㅎㅎㅎ
OBAR 해석법이네요
저렇게 읽어야 수학의 본질이 뚤리는데..
OBAR 해석법이 뭐에요?? 자세히 찾아보고 싶어요