[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가만든 쿠키~ 2
너를 위해 구웠지
-
님들1나와요?...난 안나오는데 ....6월도 90점나왔는데 1이 안뜸 듣기도 자꾸...
-
시대, 강철중 제외하고 뭐 있나요?
-
주문받으시면서 스몰토크 하다가 저한테 나이 물어보시길래 03년생이라구 대답했더니...
-
ㄹㅇ
-
홀수제발 0
작년에 짝수했잖아...
-
군수생 달린다 10
힘들다
-
맨날 초코쉐이크만 먹다가 메인글 보고 시도해봄
-
1번~10번 16~17번까지는 풀수 있는데 11~15번은 진짜 틀릴때가 너무 많아요...
-
생각하다가 정신 차려보면 졸고 있었단 사실을 깨닫게 되고....
-
각각 뭐가 강점임?
-
웰케 춥냐ㅡㅡ 8
ㅡ ㅡ ㅡㅡ ㅡㅡㅡ ㅡㅡㅡ ㅡ
-
연애를해보고싶구나 59
착하고 커다란 마음씨 지닌 미소녀 없는가
-
시즌3 3회?... 41점 나왔는데 ㄱㅊ게 본건가 9월에 지구 4뜨고 열심히핶는데...
-
이거 풀이 왜 틀린건가요?
-
예비 고1이 준비해야 할 것들(ft. 고등과정 선행 학습) 0
안녕하세요 나무아카데미입니다. 이전에는 예비 고1을 위한 고등학교 선택 방법에...
-
생명 이비에스 파이널이랑 수완 연계 영향 크나요? 꼭 풀어봐야할 정도인가욥..??
-
맞팔구해봐요 16
다들 해주시나요,,?
-
질문받아요 18
22, 23 미적 100이고 서울대학교에서 공학(전기정보 or 컴퓨터)과...
-
정법 적생모 10회 10
문제가 좀 엥스럽네
-
나 이제 옯창 다된거임?
-
이번생엔 어렵나
-
반수로 논술+정시를 선택하게 된 현역입니다 (안정써서 납치당함) 인문논술을 노리고...
-
좀 에바인데 5개밖에안남음
-
요즘에 가끔 30점대 떠서 불안했는데… 파이널 1회인데 많이 어렵진 않은거같아서...
-
어카지 남은기간 한국사만 해야하나
-
공부하기 싫어서 13
학습지 잘라다가 접은 학
-
현우진 와이프 5
어그로 죄송.. 지금 포기하고 수능날까지 진짜 기본적인 것들.. 예를 들면,...
-
걍 욕만 존나있는거 개많음 ㅋㅋㅋㅋ
-
자연수 n 에서 함수값이 0 넘는값이 있어야하고 그때 값에서 미분계수가 0이어야...
-
내년에 심찬우쌤 60명 뽑는다는데 그럼 김동욱이나 강민철같은 1타들은 얼마나 있는거임?
-
과탐을 하면됨 ㅋㅋㅋ 오개념이 어딨누 ㅋㅋ
-
가위질 연습용 점선인가요??
-
독서 감 0
원래 기출 한세트씩 푸는게 루틴이었는데 마닳2까지 끝내서 기출 두지문씩 보는거로...
-
단순 겁주기용일까 아니면 수능때도 저럴거라는 예고장일까
-
나 운동 개못함 6
저 멀리뛰기 130이 최대에요... 그냥 그렇다고...
-
남은 실모 수능때까지 못풀면 엄마한테 뚜까 맞을까봐 무서워서 벅벅 실모만 푸는...
-
1등급 가능? 2등급인가..
-
종로 정법 6
진지하게 기회의평등과 결과의평등의 기준이 뭐임?
-
근데 이제 93점을 곁들인
-
?
-
실전코드 들을 생각이였는데 이미지 선생님이 너무 예뻐서 고민 되네요 엉엉 미친개념...
-
그럼요[그러묘] 3
하지만 현실 발음은 ㄴ이 첨가된 [그럼뇨]...
-
친구가 풀어준 고능아 풀이
-
백분위 몇정도 되나요 97?
-
다들 실수 좀 여러 번 함
-
살 빠지니까 25
내가 어깡인게 더 티나 (여르비임)
-
153일차
-
막판에 실모를 5번씩 치네;
-
유불도의 죽음관 비교하는 문제라던가 1단원 윤리 접근 이런 문제라던가 그런데서…
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!