칼럼) 수학의 생각의 회로_시험만 보면 떡락하는 당신.
*경험담과 극복 방법, 그리고 수학을 어떻게 공부해야 하는가를 써놨습니다..!
제가 시험만 보면 작살났거든요.
수식때문에, 사진으로 붙여넣었습니다..!
중간에 예시로 나와있는 문제는 가볍게라도 고민하고, 뒤를 봐주세요..!
오늘도 26 부탁해요..!
혹여나, 시험에 대한 트라우마가 있으시다거나 고생하셨다면, 질문 주세요..!
너무 힘들었어서 그 마음 압니다..
힘든 입시판에 오셔서 혹은 입시판에 남게 되서.
응원보다는 걱정이 앞서고,
힘들었던 시간을 알아서, 얼마나 힘들지 알고 무작정 잘될거라고 말하기에는 험난한 길입니다.
그래서 19, 20살, 혹은 그 이상의 시간을 낭비하지 않으시도록
이왕 보내는 거 값질 수 있도록, 여지껏 글 썼고 앞으로도 써볼 생각입니다.
물론 이런 식의 '공부를 공부하는 내용'이거나, 공부하는 법에 대한 칼럼도 중요하지만,
좀 더 자세한 내용(현재는 국어 칼럼들)도 기대를 저버리지 않을 겁니다.
화이팅하고 또 달려요.
이왕 공부하는 거 잘해보자고요!
0 XDK (+10)
-
10
-
명문대 옯붕이들에게 차은우의 껍데기를 줄테니 초졸로 살라고 하면 다들 바꿀수있을까
-
뉴런은 23, 24 때 들어서 심특 들으려다가 김범준도 좋다던데
-
담임쌤 피셜 1
이번에 대구지역 수능 가채점 결과 보니까 애들 최저 충족률 상태가 말이 아니다
-
고속 0
고속 대신 돌려주실분 계시나요? 경기권,지거국 원점수기준 화작 63 확통 80 영어...
-
올해 수능(국수영 사과탐)이 2~3년 전보다 쉬운게 맞나요? 0
언론 분석 보니 그렇다고들 해서요. 특히 수학 과학은 예년 2~3년전보다 절대적인...
-
고속성장 소신 1
소신(노란색~연한 초록색) 정도면 써볼만한 가능성인가요? 건동홍은 적정이고 성대,...
-
지인들 커피 한 잔씩 돌리고 강제로 풀게 시키는중 ㅋㅋ 일단 2025학년도 수능 친...
-
착하게 살게요 ㅠ
-
이 시험이 어떻게 1컷 47… 세상이 날 두고 몰카를 하나
-
ㅇㅇ 외적으로 전혀 안끌림 전애인은 처음 만났을때부터 느좋이었는데 이번엔전혀 그런...
-
일단 가지고 있는게 좋겠죠?? ㄹㅇ 짐정리 하다가 버릴뻔
-
오른 만큼 내려가고 내린 만큼 오르는 듯
-
어쩌자는거임
-
대구경북 지역인재 있는데 혹시 어느 정도까지 가능할까여 라인 봐주실 분 계신가요
-
도서관이 좋아요 0
편안해짐 기분이
-
어떻게 신청하는 걸까요?
-
맞팔ㄱㄱ 7
대신 똥글을 견디셔야합니다
-
어차피 다시 반수할 것 같긴 한데 옮기는 건 굳이인가요?
-
텔그업뎃됨 3
연의 99% 좀 빨리 갖다 치워주세요
-
진학사 업데이트 0
5시쯤 되겠죠?
-
나이 먹을수록 뭐든 더 어려워지냐,,,
-
수능도 끝났는데 카르시온 가셔야지 ㅋㅋ
-
어느게 더 어려웠을까요?
-
수학 n제 2
기출 풀고 n제 들어가려는데 1후 2초가 풀기 좋은 n제 뭐가 있을까요?
-
에바
-
좋은건가요? 국어를 ㅅ망쳤는데 탐구는 ㄱㅊ게 나와서…
-
요즘ai땜에 취업길 막막한데 초등교육과 들어갈까요 3학년까지 다님
-
재수 예정이고 사탐런 하려는데 둘중에 뭐할까요?? 사문은 무조건 하려고 했는데...
-
서울대 연세대 성균관대 고려대 한양대 경희대 이화여대 서강대 동국대 건국대/중앙대...
-
심지어 잘 봄 하...
-
생명 비유전 엄청 빨리 풀어내는, 실전컨셉의 전자책 같이 집필하실분 계신가용 수익...
-
난 물1 생1 중딩때무터 통과하면서 역학 재밌게 했었는데……..
-
영어 개년 0
영어기출 몇개년까지 보는게 좋나요?
-
홍콩을 가봤다는 사실을 깨달았다
-
수능수학20번문제 전원정답처리 해야하는거 아닌가요?(제 뇌피셜) 2
조건으로" 실수전체에서 정의된 f(x)" 가 나와있는데 이거랑 구하는거 보고 애초에...
-
어떻게 풀어야하나요
-
저격당했네;;
-
안 그래도 탐구 창났는데 여기서 영어도 2 떴으면 진짜 그냥 복학했을 듯
-
생각보다 이슈가 없는거 보면 우리나라 입시를 주도하고 여론을 주도하는...
-
국가가 날 부르노 마
-
백분위로 화작 79 확통 84 영어 2 생윤 83 정법 92 한국사 2 솔직히 잘...
-
이번 수능 35211 나왔고 광명상가 하위과 인가경 정도 가능할 것 같습니다.....
-
과외쌤한테 연락 4
과외쌤이 수능 끝나면 맛있는거 사주겠다해서 연락한다했는데 뭐라고 보내야 될까요 과외...
-
ㅇㅇ?
-
25수학 공통15번까지 스뮤스하게 풀려서 만점인줄 ㅎ 3
ㅎㅎ 주관식에서 미끄덩햇네 ㅎ
-
해보고 싶은데 필력이 너무 그지 같아서 못 알아 먹을 것 같음 ㅠ
나만 왜 블록체인 안 걸리죠.. 맨날 누르는데...
칼럼 대방출 ㄷㄷ
열심히 읽을게요
정말 열심히 써서 애착이 가는 글입니다..! 잘 부탁드려요,,
칼럼 감사합니다. 잘 읽을게요~~ 국어 칼럼도 감사합니다.
모든 과목에서
풀은 문제수 = 깨달음의 수 란 공식을 적용해야하는 군용... 정말 맞다고 생각합니다. 언젠 쉽게쉽게 풀렸던 문제도
다시 풀면 안풀리는 문제도 많았으니까요,, 잘 읽었습니당
저 말의 뜻이 참 전달하기 어렵네요 ㅜㅜ 전달이 됐길 바랍니다..! ㅎㅎ
선스크랩 후 정독
스크랩만 하시면 안돼요.! ㅎㅎ
하루에 2개라니.. 오늘 밤은 이거다
와 ㅁㅊ
국어도,수학도 저와 같은 생각을 하시는분께는 좋아요와 팔로우 ㅎ
이정도면 돈 받고 읽어야 할 수준이네요
이런 칼럼 많이 부탁드릴게요 ㅠ
감사합니다. 방향성을 가지고 양치기를 하면 괴물이 된다는거군요ㅎ
그렇죠..!
좋은글 감사합니다!
와 근데 어떻게 N제한권을 하루만에 다푸나요..? 교육청기출 두장푸는것도 2시간걸리는데..
헉..
와진짜 ㅜㅜㅜ 칼럼 읽으면서 제가 지금까지 아이디어에 의존한 것 같다는 생각이 들어요 ㅠㅠㅠ 혹시 수학 개념은 어디까지 파고드는게 좋을까요..? 예비 고3인데 개념 정말 확실히 잡고 싶어서요.. 개념공부는 증명 위주로 설명이 가능할 정도로만 공부하면 될까요?
개념은 확실하게 잡는게 맞아요. 교과서 개념을 실전 수능 개념까지 확장시켜서 잡으셔야 합니다…! 퍙균값 정리 같은 게 실제로 어디에서 쓰이는가 했을 때 인티그랄 a부터 b까지 f(x) 적분=0이면 f의 부정적분을 F라 할때, F(b)-F(a)=(b-a)f(c)이므로 f(c)=0인 c가 a<c<b를 만족한다. 이런 식으로 탁탁탁 나와야 합니다…! 평균값 정리 같은 경우 많은 학생들이 교과서에서만 보고 문제에 안 쓰는 경우가 많아서요…! 개념이 실전의 근간임을 일고, 실전 개념으로 전환해 공부하셔야 해요..!
감사합니다!!!
질과양은 동시에가야하는군요...
하루에 어마어마한양을푸는게아니라...
국어가 이런데 어떻게
해야할까요
국어는 재수하며 얻은 것 이러는 게시물과 국어 칼럼들에 써놨으니 보시면 됩니다..!
이 생각의 회로라는 것은 자기가 고민하거나 헷갈리는 문제에 한해서 만드는 갓인가요? 또, 따로 노트같은 곳에 정리해놓고 암기하는 식으로 하셧나여?
워낙 평소에 잘 푸는 문제는 이미 생각의 회로가 잡혀있는거죠.! 전 사실 문제 틀리면 실수로 틀리더라도 그 실수를 없앨 회로를 일일이 만들었네요,, 그래서 포스트잇을 엄청 썼었어요..! 포스트잇 나중에는 다 떼서 노트에 붙였는ㄷ 따로 외우진 않았어요 포스트잇 만들면서 머리에 각인이 되거든요! 대신, 정말 중요하다고 생각하는 건 옥스포드 노트 한쪽에 정리해서 쉬는시간에 스윽 읽으며 수능 봤네요!!
헐크 공부법 저두 한번 해볼게용..!
이런 사람이 에피 달고 의대 달겠구나
하루 한권... ㄷㄷ
와 잘읽었슴다ㅠㅠ.. 감사합니다 덕분에 방향 정했어요
뒷북이긴 한데 그래서 이번 수능 12번만큼 기출 반영 심하게 한 문제 없는듯요 ㅋㅋ
제가 현역때 왜 망했는지 알것 같네요
생각해보니 연습할 때 실전에서는 어떻게 풀것인가에 초점을 두고 생각회로를
연습했어야 했는데 '풀었으면 된거 아니야?' 라는 안일한 생각을 했던거 같네요
좋은 글 감사합니다 :)
이 글 동생한테도 보여줘야 할 것 같네요
저도 계속 후회한 게 현역 때 이걸 몰랐다는 사실이 원통해 다른 분들은 그러지 말라고 글을 쓰네요 알아봐주셔서 감사합니다 :)
개쩐다
감사합니다. 전 3등급인데 1등급 친구들도 제 풀이보면 "와 너 이문제 개잘풀었네 어케 생각했냐?" 이런적이 가끔 있었는데 이게 독이었네요
수학 1일 1~2 실모 푸는 요즘.. 다시 생각해보게 되는 글이네요
뭔가 저렇게 깨달음을 정리해놓는게 오답노트의 상위호환이라는 느낌이 드네요
그러면 오답노트는 따로 안하셨나요?
포스트잇의 깨달음이 일종의 제 오답노트였다고 생각하시면 될 것 같습니다!
이미 모든 경우에 대해 회로가 존재하는 수업을 듣고 그걸 체화하는 연습을 하는 건 어떻게 생각하시나요?
그런 수업은 찾았는데,
본문을 읽다보니 회로 자체를 만드는 경험도 중요하다는 생각이 들더라고요
물론 수업에 플러스 알파로 저만의 회로를 첨부하겠지만 스스로 무에서 유를 창조하는(회로생성) 경험을 꼭 해봐야 할까요?