2014학년도 9월 국어A형 x선 보기문제21번 상세해설
2014학년도_수능9월모의평가_국어A_문제지.pdf
2013_수능_언어홀수형문제.pdf
필자는 강민철선생님의 강의에서
2014학년도 9월 모의A형 X선지문을 듣고 Q&A에
[같은 두께의 물체(가)의 투과율을 2x(%)라고 하고, 물체(나)의 투과율을 x(%)라고 하면
100의 x선을 물체(가)에 투사했을 때, 감광필름에 도달하는 x선의 양은 2x,
물체(나)에 투사했을 때, 감광필름에 도달하는 x선의 양은 x입니다.
그렇다면 물체(가)의 환산값은 100-2x이고 물체(나)의 환산값은 100-x이므로
물체(가)의 환산값이 물체(나)의 환산값의 1/2이기 위해서는 100-2x:100-x=1:2를 만족 해야하므로 x=100/3 즉, (가)의 투과율은 66.666... (나)의 투과율은 33.333...이어야 하는데
보기에는 투과율의 비만을 언급했기 때문에 환산값의 비를 추론하는 것은 정량적으로 불가능합니다.
당연히 느낌적으로는 환산값의 비가 투과율의 비의 역수일 것이다 라는 것은 그림 a,b,c로 보나 의도상으로 보나 이해가 갑니다. 저 또한 문제를 처음 풀 때는 당연히 그렇게 했고요.
근데 제가 다시 생각했을 때 '우리는 모두 잘못푼것'이거나 '평가원의 출제오류'라고 생각합니다. 당연히 수능이 아니므로 큰 문제는 발생하지 않았겠지만 만약 수능이었다면 이루말할 수 없는 파장을 가져왔으리라 생각됩니다. 제 주장에 오류가 있다면 지적해주시고 오류가 없다면 저는 이 문제를 어떻게 받아들여햐 할지 설득부탁드립니다. 긴 글 읽어주셔서 감사합니다.]
라고 질문하여
[수능 국어 문제는 지문의 정보만 이용해서 풀이해야 합니다.
지문 외적인 정보를 이용하는 순간, 자신의 논리도 지문 외적인 정보에 의해 간단하게 반박당할 수 있습니다.
물론 지문 안의 정보를 통해서도요.
학생은 수학적으로 비례식을 구해 주셨는데. 이건 성립 불가능합니다.
1) 애초에 (가)의 두께가 (나)의 두 배인 것을 고려하지 않았죠.
모든 조건을 고려하지 않았으므로 오류입니다.
2) 또 X선의 세기를 투과율 + 환산값이라고 본 것도 오류입니다.
투과율은 X선이 투과되는 정도를 나타낸 것으로 그런 식으로 나타낼 수 없습니다.
3) 또한 지문에서 제시한 정보 외에도, 학생이 잘 모르는 공식들이 존재할 수 있습니다.
예를 들어 투과율 공식은 상황에 따라서 매우 복잡한 식이 될 수도 있습니다. 지문에서는 단순히 비례 관계로 주었으니 그에 맞추어 문제를 풀면 되는 것이구요.
그 외에도 모든 상황, 모든 변수, 과학적 발견 등을 모두 고려한 반박을 해야 하는데 이런 반박은 하려면 해당 분야에서 학사, 석사 학위 수준에서도 어렵습니다.
다시말해 고등학교 수학 과목에서 배운 비례식을 X선 발생기의 투과율을 계산하는 데 사용하는 것만으로는 충분한 반박이 되지 못한다는 것이지요.
수능 국어 과목에서는 고맙게도 이런 모든 변수를 통제한 상황에 대해 '지문의 정보만 이용하여' 문제를 풀라고 했습니다.
따라서 이에 대한 부분만 고려하시면 됩니다.]
라고 답변을 받았고 이에 대해
[대답을 1) 2) 3)으로 나눠해주셨는데 이해가 갑니다.
투과율에 대한 정의가 언어적으로 되어있기 때문에 지문의 내용으로 수학적인 관계를 이끌어낼수 없다는 것은 이제 이해가 갑니다. 단순히 %로 나타내려한 것이 얼마나 위험한 것인지 알게 되었고요.
그런데"지문에서는 단순히 비례 관계로 주었으니 그에 맞추어 문제를 풀면 되는 것이구요."
라고 하셨는데 지문에서 '투과된x선의 세기는 투과율이 낮을수록 두꺼울수록 약해진다.'
라는 것을 통해 정비례관계를 주었다고 하더라도
문제에서는 투과된 x선의 세기차이를 통해 감쇄된 빛의 양을 묻고 있는데 투과된x선의 세기에 대한 비례관계를 알려준 것으로 몇배몇배이렇게 논할 수가 있는 건가요?
(중략)
문제가 풀리기 위해서는 환산값은 두께에 정비례하고 (1/투과율)에 정비례 해야 하는데 지문과 보기의 '어떤 근거'로 이들의 관계가 '정비례'라고 짐작하고 문제를 풀 수 있는 건가요?]
라고 재질문 한 상태입니다.
*이후 답변이 왔습니다. 세인조교님의 답변으로 아래와 같습니다.
[선생님께서는 환산값을 몇배 몇배 이렇게 논한 것이 아니라.
투과율이 2배라는 <보기>의 정보와 두께가 2배라는 <보기>의 정보를 통해 그래프의 개형을 추론한 것입니다.
2문단의 투과율은 공기 뼈 물 지방 순으로 높다는 정보를 통해 물체에 따라 투과율이 다르다는 것을 알 수 있고.
<보기>에서 묻는 의도가 이것임을 알 수 있죠. 투과율이 (가)가 두 배 높고. 물체의 단면도 (가)가 두 배 두껍고.
물체마다 다른 투과율과 환산값의 비교를 물으려는 문제의 의도대로 풀면 됩니다.
아주 친절하게도 A와 C라는 예시까지 보여 주었네요. C를 보면 (가)의 왼쪽 끝 부분보다 (나)의 왼쪽 끝 부분이 두 배 가량 더 큰 값이 나왔죠?
이건 '평가원'의 입장입니다. 평가원이 이렇게 풀라는 가이드라인을 제시했다는 의미입니다.
따라서 여기에 맞춰서 풀면 되죠. 우리는 학자나 비평가가 아니라 대학에서 학습할 능력을 평가받는 수험생이니까요.
(중략)]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
회원에 의해 삭제된 댓글입니다.좋아요 0
-
요즘ai땜에 취업길 막막한데 초등교육과 들어갈까요 3학년까지 다님
-
재수 예정이고 사탐런 하려는데 둘중에 뭐할까요?? 사문은 무조건 하려고 했는데...
-
서울대 연세대 성균관대 고려대 한양대 경희대 이화여대 서강대 동국대 건국대/중앙대...
-
심지어 잘 봄 하...
-
생명 비유전 엄청 빨리 풀어내는, 실전컨셉의 전자책 같이 집필하실분 계신가용...
-
난 물1 생1 중딩때무터 통과하면서 역학 재밌게 했었는데……..
-
영어 개년 0
영어기출 몇개년까지 보는게 좋나요?
-
홍콩을 가봤다는 사실을 깨달았다
-
수능수학20번 0
조건으로" 실수전체에서 정의된 f(x)" 가 나와있는데 이거랑 구하는거 보고 애초에...
-
어떻게 풀어야하나요
-
저격당했네;;
-
안 그래도 탐구 창났는데 여기서 영어도 2 떴으면 진짜 그냥 복학했을 듯
-
생각보다 이슈가 없는거 보면 우리나라 입시를 주도하고 여론을 주도하는...
-
국가가 날 부르노 마
-
백분위로 화작 79 확통 84 영어 2 생윤 83 정법 92 한국사 2 솔직히 잘...
-
이번 수능 35211 나왔고 광명상가 하위과 인가경 정도 가능할 것 같습니다.....
-
과외쌤한테 연락 2
과외쌤이 수능 끝나면 맛있는거 사주겠다해서 연락한다했는데 뭐라고 보내야 될까요 과외...
-
ㅇㅇ?
-
25수학 공통15번까지 스뮤스하게 풀려서 만점인줄 ㅎ 3
ㅎㅎ 주관식에서 미끄덩햇네 ㅎ
-
어느게 더 어려우려나요?
-
해보고 싶은데 필력이 너무 그지 같아서 못 알아 먹을 것 같음 ㅠ
-
국어: 내가 안 물어봤으면 안할뻔함 수학: 그나마 시켜주긴 함 영어: ㄹㅇ안함...
-
1.미미미누 교대,교사 관련 영상들 + 댓글창에 현직 교사들 댓글 2.pd수첩...
-
”일반 컷 99“
-
설사범, 연생과대, 고정경대에서 이과로 전과 힘든가요?? 0
학벌올리고 전과하고싶은디 ㅠㅠ 전과 힘든가요??
-
수능 끝나고 싹 다 가정학습 처리해줘서 2월 졸업식 때까지 학교 5일도 안 나갔음...
-
한지,세지도 ㄱㅊ나요? 제가 타임어택,안정성 떨어지는걸 극혐해서요 ㅠ
-
하고 싶은 거 다 해봐야지 나중에 후회하는 것보단 vs돈도없구자신도없음 에휴
-
침대에 달린 등도 안 끄고 잤네
-
주어진 함수 f(x)의 그래프가 다음과 같습니다. 단순하게 생각할 때 이 함수에...
-
주변에 미적 100은 많이 없는데 96 92는 진짜 개 많음 미적 1컷 92는...
-
화장실도 인기다리게 칸 개많았고 의자랑 책상도 좀 옛날거긴했는데 그래도 사이즈도...
-
아니 소재 진짜 막 쓰네.. 딥페이크 저거는 아예 저 글자 빼냐 마냐 하나로 정치...
-
1년 내내 안씻는 물스퍼거 놈들이 너무 많아
-
파업 때문이구나 ㅡㅡ
-
현실과이상의괴리 8
내적갈등 해소방안 : 한번더보기
-
국어 노베 0
국어 공부해본 적 없고 고2라서 모의고사 칠 때만 모고 푼 적 없어요. 진짜...
-
과탐가산 0
과탐 2등급 대가리가 가산5프로정도 받으면 사탐 높1이랑 비슷해지나요?
-
수리논술ㅋㅋ 1
기하 오늘 시작할 예정인데 한양대 가능한 부분? 올해 수능 미적은93점임.
-
너네 아직도 협상 중이잖아 원딜 바이퍼 잖아 피넛제카딜라이트 있잖아 제발
-
한문제 풀면 맞췄나? 틀렸나? 너무 궁금해서 채점병 도져요… 이 습관도 고쳐야할텐딩…힝…
-
얼버기 11
행복한꿈을 꿨어요
-
올해 수능을 바탕으로 내년을 예측한다? 논리적으로 보일수는 있겠지 근데 거의 맞추는...
-
실패자가 대다수이다 국잘 수망 탐잘 국잘 수잘 탐망 조합으로 대부분 복학 예정이다
-
이거에 따라 대학이 바뀔 수도...
-
수능 치기 일주일전엔 더 이상은 못해 ㅅㅂ 이런 상태였었는데 수능 끝나고 슬금슬금...
-
나도 팔로워가 쭉쭉 오르겠지 26년도수능은 내꺼다 !
-
아 그때를 위해 열심히 피를 뽑겠다...
-
제곧내