[수학 칼럼] 200928(나)로 보는 기출분석
I. Introduction
저는 수학 (가)형 응시자였고,
재작년, 즉 20년도 평가원 100 96 96 임을 밝힙니다.
(집에서 친 21년도 평가원은 92 100 100)
개념학습에 난항을 겪거나 풀이의 애매함을 호소하는 분들이 많아 글을 씁니다.
혹여나 그런 분이 아니더라도 한 번 읽어보면 도움되실 겁니다.
글이 기니까 바쁘시면 쟁여두고 시간 날 때 읽으시길 바라요.
II. Body
다룰 문제입니다. 풀어보지 않으신 분들은 먼저 풀어보는 걸 권장합니다.
한 번 뚫으면 굉장히 쉬워지지만, 처음 보면 난해할 수 있어 가져왔습니다.
이 타입의 문항은 몇 번 출제가 되었기 때문에, 해당 유형을 학습한 분들은 아시겠지만
굉장히 다양한 풀이가 있고 무엇이 좋은 풀이인지는 의미가 없다고 생각합니다.
일단 제가 알고 있는 풀이들을 써보겠습니다.
풀이를 처음 봤다고 가정하면, 수험생은 크게 두 가지 반응을 합니다.
① 해설을 보면 풀겠는데, 비슷한 문제를 보면 못 풀겠다.
② 대체 이런 생각을 어떻게, 왜 하는지 모르겠다.
지수/로그방정식 문제라 지수/로그 개념을 다시 보고 왔지만 모르겠습니다.
이런 경우 어떻게 해야 할까요? 개념인강을 다시 볼까요? 문제를 더 풀어야 할까요?
뭘 봐도 이런 문제는 어떻게 풀어야 할지 안 나와 있는데... 어떡하죠?
수학을 어느 정도 공부하다 보면 이런 순간, 즉 정체기가 오곤 하죠.
한 번 개념 공부를 다시 해봅시다.
어떤 책이든 상관없지만 가장 내용이 간단한 책, 교과서(천재교육)를 사용하겠습니다.
문제 푸는 데 필요한 개념을 추려보면 이쯤입니다. (기본을 제외하면)
그런데 달랑 저걸로 뭐 어쩌라는 걸까요? 이건 거제도에 있는 개도 아는 건데?
하지만 교과서에 다른 내용은 없는데...
열심히 보다 보니, 지수법칙 ④번을 제외하면
지수와 로그의 연산은 모두 밑이 같은 상황을 다루고 있다는 생각이 듭니다.
밑이 같은 상황.... 밑이 같은 상황이라... 풀이를 다시 보겠습니다.
갑자기 밑 변환 공식을 왜 쓰는 걸까요? 혹시 로그의 밑을 같게 만드는 것 아닐까요?
다음 풀이를 봅시다.
이번에는 역수를 취하네요?
혹시 로그의 진수가 모두 k인 점을 이용해, 역수로 돌려 밑을 k로 바꾸는 걸까요?
윤곽이 잡히기 시작합니다.
여기서는 p로 두고 역수를 취하네요. 진수를 임의로 잡고 역수로 밑을 통일시켜 계산하려는 거겠군요.
k로 지수를 넘깁니다. 지수를 계산할 때, 밑을 k로 통일시켜 계산하려는 거겠네요.
아. 그럼 풀이의 생각들은 밑을 같게 만들기 위한 노력이었군요. 다음 문제도 풀 수 있겠다는 생각이 듭니다.
그런데 이 유형의 문제에만 국한되는 풀이일까요? 지수/로그 단원 전체를 아우르는 관점은 아닐까요?
우리는 사실 이 원칙을 지키고 있었습니다.
▲211207(나)
이런 문제를 풀 때 무의식적으로 밑을 같게 만들죠. 문항이 새로워 보이니까 당황했을 뿐입니다.
그러나 '지수/로그의 계산은 밑을 같게 만들어야 한다'라는 사실을 의식의 영역에 새기는 순간을 만들었습니다.
결과적으로 풀이에 필연성을 부여하고, 어려운 문제를 풀 때 안정감을 가질 수 있었습니다.
그렇다면 다음부터 지수/로그 대수문제를 풀다 막힌다면 밑을 같게 만드는 방법을 고민해야겠군요.
III. Conclusion
이렇게 200928(나)에 대한 분석을 마쳤다고 합시다.
결론을 도출하면서 특별한 스킬이나 대단한 발상을 이용하지 않았습니다.
누구나 가지고 있는 교과서를 펴고 해당 단원을 훑어본 뒤, 이것밖에 없는데 싶은 걸 이용했을 뿐입니다.
그런데 해당 문제에 대한 분석뿐 아니라 비슷한 유형, 더 나아가 단원을 바라보는 관점을 얻었습니다.
어떤 생각이 유의미한 결과를 만들었을까요?
본문을 서술하면서 한 군데 강조를 했습니다. 딱히 내용이 이것밖에 없다.. 라는 부분이죠.
수능 시험범위는 교과서라고 못이 박히게 들었습니다.
이 말이 함의하는 바는, '최소' 교과서만 봐도 풀 수 있는 문제를 낸다입니다.
말씀드리고 싶은 건, 문제로 나온 내용이 교과서에 무조건 있다는 겁니다. (교과서만 보라는 게 아닙니다)
교과서에서 배운 상황과 다른 문제? 나오지 않습니다. 왜, 배우지 않았으니까요.
다르게 말하면 이렇게밖에 못 풉니다. 왜, 배운 게 이것밖에 없으니까.
따라서 내가 배운 것이 무엇인지, 사용할 수 있는 상황은 언제인지 정확하게 인식하는 연습이 필요합니다. (★)
문제를 천천히 내가 아는 범위로 끌고오세요. 본인이 세운 몇 가지 대원칙에 맞춰 행동하는 겁니다.
이 원리가 적용되는 건 풀이과정뿐만이 아닙니다.
'식의 개수와 미지수의 개수가 같다'라는 둥의 원칙은 발문분석에 지대한 영향을 미칩니다.
이런 원칙을 점점 다져가면서 통합시키고, 케이스를 나눠보고... 하는 과정에서 개념을 문제에 적용하는 겁니다.
이를 반복하다 보면 단원에 학습할 내용이 점점 없어집니다. 다 비슷한 문제로 보이는 경험을 하게 될 겁니다.
다만 위의 예시와 같이, 교과서를 보고 '어떤 상황을 다룬다'라는 걸 인식하기가 힘듭니다. 불친절해서..
혼자 하기 위해서는 행간을 읽고, 공통점이나 차이점을 찾거나 유기적으로 내용을 연결해야 합니다.
문제를 풀 때는 표현을 보고, 배운 내용들을 모두 정확하게 떠올린 후 연결해야 합니다.
(중학교 때 선생님이 하신 말씀 중에, 수학은 암기과목이라는 말이 떠오르네요.)
그래서 교과서와 기출문제를 대신 분석해주는 사설 컨텐츠를 이용하죠.
하지만 강의를 듣는다고 모든 문제가 풀리지 않습니다. 모든 내용을 단번에 흡수할 수는 없으니까요.
또 이 과정을 본인이 스스로 수행한다면 응용력이 비약적으로 강해집니다.
그러니까 개념을 '돌린다'라는데 너무 집중하지 않았으면 좋겠습니다.
공부해나가면서 자신이 이 문제를 풀려면 무엇을 해야하는지, 발견하지 못한 건 무엇인지
끊임없이 고민하고 책을 다시 펼쳐보고 문제를 풀어보고... 이 과정에서 개념학습이 이루어진다고 생각합니다.
쉽지 않습니다. 하지만 본문의 내용과 비슷한 무언가를 스스로 발견해냈을 때에는
분명히 괄목할 만한 성과가 찾아오리라고 믿습니다. 그리고 여러분이 해내기를 소망합니다.
질문은 항상 받습니다. 긴 글 읽어주셔서 감사합니다.
0 XDK (+500)
-
500
-
안 그래도 탐구 창났는데 여기서 영어도 2 떴으면 진짜 그냥 복학했을 듯
-
생각보다 이슈가 없는거 보면 우리나라 입시를 주도하고 여론을 주도하는...
-
국가가 날 부르노 마
-
백분위로 화작 79 확통 84 영어 2 생윤 83 정법 92 한국사 2 솔직히 잘...
-
이번 수능 35211 나왔고 광명상가 하위과 인가경 정도 가능할 것 같습니다.....
-
과외쌤한테 연락 4
과외쌤이 수능 끝나면 맛있는거 사주겠다해서 연락한다했는데 뭐라고 보내야 될까요 과외...
-
ㅇㅇ?
-
25수학 공통15번까지 스뮤스하게 풀려서 만점인줄 ㅎ 7
ㅎㅎ 주관식에서 미끄덩햇네 ㅎ
-
국어: 내가 안 물어봤으면 안할뻔함 수학: 그나마 시켜주긴 함 영어: ㄹㅇ안함...
-
1.미미미누 교대,교사 관련 영상들 + 댓글창에 현직 교사들 댓글 2.pd수첩...
-
설사범, 연생과대, 고정경대에서 이과로 전과 힘든가요?? 1
학벌올리고 전과하고싶은디 ㅠㅠ 전과 힘든가요??
-
수능 끝나고 싹 다 가정학습 처리해줘서 2월 졸업식 때까지 학교 5일도 안 나갔음...
-
한지,세지도 ㄱㅊ나요? 제가 타임어택,안정성 떨어지는걸 극혐해서요 ㅠ
-
하고 싶은 거 다 해봐야지 나중에 후회하는 것보단 vs돈도없구자신도없음 에휴
-
주어진 함수 f(x)의 그래프가 다음과 같습니다. 단순하게 생각할 때 이 함수에...
-
주변에 미적 100은 많이 없는데 96 92는 진짜 개 많음 미적 1컷 92는...
-
화장실도 인기다리게 칸 개많았고 의자랑 책상도 좀 옛날거긴했는데 그래도 사이즈도...
-
아니 소재 진짜 막 쓰네.. 딥페이크 저거는 아예 저 글자 빼냐 마냐 하나로 정치...
-
1년 내내 안씻는 물스퍼거 놈들이 너무 많아
-
파업 때문이구나 ㅡㅡ
-
현실과이상의괴리 8
내적갈등 해소방안 : 한번더보기
-
국어 노베 0
국어 공부해본 적 없고 고2라서 모의고사 칠 때만 모고 푼 적 없어요. 진짜...
-
과탐가산 0
과탐 2등급 대가리가 가산5프로정도 받으면 사탐 높1이랑 비슷해지나요?
-
수리논술ㅋㅋ 1
기하 오늘 시작할 예정인데 한양대 가능한 부분? 올해 수능 미적은93점임.
-
너네 아직도 협상 중이잖아 원딜 바이퍼 잖아 피넛제카딜라이트 있잖아 제발
-
한문제 풀면 맞췄나? 틀렸나? 너무 궁금해서 채점병 도져요… 이 습관도 고쳐야할텐딩…힝…
-
얼버기 11
행복한꿈을 꿨어요
-
올해 수능을 바탕으로 내년을 예측한다? 논리적으로 보일수는 있겠지 근데 거의 맞추는...
-
이거에 따라 대학이 바뀔 수도...
-
수능 치기 일주일전엔 더 이상은 못해 ㅅㅂ 이런 상태였었는데 수능 끝나고 슬금슬금...
-
나도 팔로워가 쭉쭉 오르겠지 26년도수능은 내꺼다 !
-
아 그때를 위해 열심히 피를 뽑겠다...
-
제곧내
-
무슨 사탐 얘기만듣고 개ㅈ밥과목인줄 알고(맞긴함) 저능아과목 나정도면 1등급...
-
예를 들어 닉네임이 호타로 이면 진짜로 짤남같이 생김
-
면접 보러 오라고 하시는데 이런 거 첨이라서.. 이번 수능 영어 94점이긴 한데...
-
좋은 아침입니다 6
-
내년에 물1 할거임
-
표본분석 스나 하는 법 내가 이해한게 맞나 좀 봐주실분 2
진학사에서 그 모의지원 메뉴 들어가서 내 위로 깔려있는놈들이 여기 말고 어디...
-
대학 라인 0
과 상관없이 대학라인 어디까지 가능한가요…ㅜㅜ
-
수능을 그리 잘 보진 못해서 닉값은 정시로 못할 것 같아요 수시로는 할 수...
-
트럼프당선과 함께 보호무역주의가 가속화되고(관세폭탄, 이차전지 ira폐지, 반도체...
-
실전 30분안에 당황안타고 아는거 다 보여주는게 얼마나 빡센건지 다시한번느낌ㅋㅋ...
-
19일 뭐 업뎃 된다 했던거 같은데 뭐였음?
-
재수 성공 2
재수 성공의 기준이 뭐라고 생각하시나요?
-
과탐이나 사탐이나 다 똑같은 듯 그나마 괜찮은 곳은 투과목이나 지리, 역사 라고 봄...
-
국어 : 밑에 페이지 숫자만 확인시킴 나머지 : 안함 감독관들 지침좀 제발 제대로 읽고 왔으면 ㅠㅠ
-
설수리 가고싶다 0
ㅜㅜ
안배워서 못푸는 건 없죠...보고도 이게 어디 단원인지, 그때 뭘 해야 하는지 제대로 몰라서 못푸는거지 ㅜㅜ
전자는 학습이 부족한 것이고, 후자는 이 글의 목표 독자입니다.
저거 교육청 모의고사에서 이미 많이 나오던 유형이었어요
본문에 해당 내용이 있습니다.
좋은 글 감사합니다.