2020학년도 수능 수학 가형 30번질문
일단 해설지의 방법은 이해하였음을 미리
말씀 드립니다.
제가 궁금한 점이 몇가지 있어서 질문드리오니
수학 고수분들이 답변해주시길 바랍니다
이 문제입니다만
상황이 이렇게,
x에 대한 지수함수와 로그함수가 t라는 상수에 따라
x축에 대한 평행이동 및, 몇배로 이루어진 상황에서
"주어진 t값에 대한 a만큼의 평행이동으로 접점을 한개 만들어라"라고 이해하였습니다.
즉, x변수(함수) , t 상수 , a는 t에 대한 변수
여기서 다들 아시다시피,
접점에서의 함숫값과 기울기가 같다로 식을 두개 세웁니다. 접점(k)라 두자.
이후로, 식을 미분하여 튀어나온 a의 속미분을 활용하여 f프라임t를 구하고, k는 위아래에 존재하는 식을 잘 연립하여, 소거하면 문제의 답이 나옴을 알 수 있습니다만,
저는 여기서.
ㄴ 식에 ln을 취하여 a즉 f(t)를 직접 구하고자 합니다.
이 식을 a=t~~에 대하여 정리하여 표현한 뒤,
k를 잘 소거하면( 접점의 좌표, 상수이므로)
f프라임 t를 구할 수 있을거라 생각 하였습니다.
계산 실수 발견으로 밑에 사진으로 대체
그래서 식을 정리하였습니다만, 여기서
질문이 두 개 있습니다.
1. k는 t에 대한 함수인가? 그냥 상수인것인가
=>미분할때 k를 어떻게 처리할지가 조금 헷갈립니다.
2. k의 값을 어떻게 제거할까?
k의 좌표를 정확히 알면 좋겠지만,
이 관계식 밖에 모르므로, 어떻게 접근해야 할 지 막혀 버렸습니다.
조언 및 오류를 찾아주실 분을 찾습니다.
도와주세요 수학고수님들..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
세학교 모두 1학기 휴학 안되나요..?
-
어디까지 쓸만함??
-
흠.. 난 비관적에 가깝다고 느꼈는데
-
고속 0
고속 하위권라인 대신 해주실분 계신가요?? 경기권라인 지거국 등등..
-
28 수능부턴 통사통과 보는 대신 영어도 상대평가되는거 아님? 1
다시 등급제로
-
반수할생각이라 책 쌀때 중고로 구매할까하는데 내년수능 준비하면서 뉴런 시냅스...
-
현우진 : 100번이상 본듯. 키가 크다. 한석원 : 코로나 전에 깊생 근처에서...
-
수특이었나 수완이었나 이상 작가 연계로 건축무한육면각체가 나왔었으면 재밌었겠다
-
현역 44355 (미적과탐) 재수 14456 (미적과탐) 삼반수 25211...
-
사탐 1타 강사가 임정환쌤, 김종익쌤, 이지영쌤 정도로 생각하면 되나요? 1
통합사회 인강 저 셋 중에서 들어볼까 고민되서요
-
미적 난이도를 10이라 치면 확통은 난이도가 어느정돈가요? 5
여러분 생각 자유롭게 ㄱㄱㄱㄱㄱ
-
ㅈㄱㄴ
-
포함한다는거 사실임? 고려대는 24부터 연세대는 26부터 내신 포함한다는데?...
-
기출을 더 풀까요 아니면 n제를 사서 풀까요
-
하....
-
어케함? 일말인데 한번 혼나면 그거 기억에 ㅈㄴ남고 공부에도 방해됨...
-
수능 2등급 lets go
-
성장형 인재 1
가 되고 싶어요
-
쿠팡은 잘 잡힐줄 알았는데
-
진짜 놀라울정도로 15
Mbti를 모르는 상태에서 괜찮다고 느끼는 사람들은 어째 다 인팁 인프피임ㅋㅋㅋ...
-
부처의 눈에는 부처만이 보이고 금수의 눈에는 금수만이 보입니다 이하생략....
-
내려갈일은 없을거 같은데
-
기생집 4점 하는중인데… 내년엔 모하지~ 추천좀여
-
6평까지만해도 교사 출제 가지고 다들 평가원 욕 했는데 수능되니까 조용하네
-
제시문 [가]를 세칸 말고 한 칸에 작성하면 감점되나요ㅠ? 칸이 부족해서 동국대에서...
-
기하 권하는 사람이 많네요 기하는 표점 낮지 않나요?? 뭔지 잘 몰라서….
-
상관없나요? 곧 졸업하는 고3이고 내년에 수능 봅니다 종치고 2분뒤에 들어와서 출석...
-
대학 라인좀 0
언매 미적 영어 물1 지1 기준으로 백분위 93 93 1 93 93이면 대학...
-
귀여워요..
-
차이가 뭐죠..????
-
고등학교때 학원 안가고 영어단어도 안외웠는데 1등급 그냥 나옴..남는시간에 다른공부...
-
왜 꼭 내가 맞춘 문제는 이의제기 들어오고 내가 틀린 문제는 이의제기 안들어옴??
-
국어 비문학 공부할때 오답만 하면 안된다는데 도대체 뭘 하라는건지 모르겠어요.....
-
마음이 어수선합니다
-
다른건 몰라도 반수생 장수생 태그는 왜 없앴을까요..
-
나는 왜 늦게 태어나서 이런 꿀통을 못 보는 거냐 ㅠㅠ
-
생각보다 잘 안걸리는데 보통 몇번만에 걸리심?? 확정문자
-
저출산 때문에 나라 쳐망해가는데 허구한 날 명품백 받았니 마니만 몇년째 얘기하고...
-
얼버기 4
안녕하세요
-
얼?버기 2
-
이번 수능언매 40번에 5번 찍어서 틀린 사람입니다. 4번은 방송 출연자가...
-
따뜻한 우동먹고싶다 따뜻한 쌀국수먹고싶다 따뜻한 붕어빵먹고싶다 따뜻한 호떡먹고싶다
-
현역 때 떨어지고 수시 재수로 다시 지원하면 무조건 떨어짐?
-
늦게일어도려해도 안되는..
-
고대 내신 반영전형도 그렇고 손해 볼 내신은 아닌 겅가요? 그냥 지방 일반고임요
-
현정훈 물2 3
라이브 개강하나요? 현역이라 재종 못 들어가요 라이브 개강 안 하면 그냥 지2하려고 함...
-
진심으로.. 안먹으면 머리아픔
-
한시간 잤는데도 어질어질하고 내 생각과 행동 사이에 딜레이가 있는 것 같음...
우변에서 ln2는 괄호 밖으로 나와야해용
아 감사합니다!
ln(k-t)=1/(k-t) 에서 'k-t'의 값이 상수입니다. 따라서 k는 t값에 따라 변하는 변수입니다.
지적 감사드립니다. 혹시 이 방법으로는 풀이를 끝까지 진행 못할까요?
가장 마지막 식에서 양 변에 (k-t)를 곱합시다
이때 ulnu=1을 만족하는 상수 u는 유일합니다. 이런 u에 대하여 k=t+u입니다
그 다음 이걸 싸그리 식 ㄱ에 대입합니다
혹시 다시 한 번 설명 해 주실 수 있나요?
k는 t에 대한 변수이므로
ulnu=1을 만족하는 u가 상수니까
k-t = u상수라 두고,
k= t+u를 대입해서 정리하면
u상수 t는 미분 가능하므로
k에 대한 미분처리가 가능해진다는 말씀이신거죠?
그렇습니다. dk/dt = 1이고 그것보다는 식 ㄱ의 k자리에 싸그리 t+u를 대입하는게 나을겁니다