미분가능성이랑, 미분계수 정의 관련 질문..
함수 f(x) 가 있어요.
lim h->0 일때
{f(a+h)-f(a-h)}/2h 가 존재하면 미분가능하다.
라는 얘기가요.
틀린말이잖아요.
근데 미분계수의 정의에는 y변화량/x변화량 의 극한값을 미분계수라 한다. 라고 되어잇는데,
전 , 그래서 아하! 델타x분의 델타y 의 극한이 존재하면 당연히 미분가능하지! 이렇게 생각했는데요.
어디서 잘못된 건가요ㅠㅠ
{f(a+h)-f(a-h)}/2h 가 x의 변화량분의 y의 변화량이 아닌건가요 ? ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저 닉변할까요 0
한다면 뭘로할지도 추천부탁해요
-
칼럼 또 씀뇨 0
ㅇㅇ
-
설마 있겠어
-
2탄에선 우리 옯붕이들이 실제로 할 수 있는 것들로 준비 해봤다 1. 기본중의...
-
안녕하세요 인간쓰레기에서 인을 담당하고 있습니다
-
상지한 a형 0
37/149 점공 합격기원.. 진짜 점공 안들어오네요 ㅋㅋㅋㅋ 빵이면 좋겠다
-
3년전 사귀엇던 남자고 내가 번호바꾸고 카톡 전번으로 추가랑 추천친구 다...
-
차라리 연대나 서강대 성적이 되면 괜찮은 거 같은데 중앙대랑 경희대는 사탐 감점이...
-
영어 고1은 무난히 1등급 떴는데 고2 올라오니까 단어가 한 지문에 한 6-7개씩...
-
생윤이냐 윤사냐 2
어떤게 더 나으려나 둘다 말장난 많은 편인가요?
-
맞팔구 5
-
가군 연고대로 보통 빠지심?
-
뭘까요? 44244라는데
-
떠날때가 된건가
-
셋다 통학불가능해서 거리는 상관없어요. 인풋 아웃풋 인식 다 고려해서 어디가 제일 좋아보이나요?
-
잇올 어떰? 2
국영수 노베 수준이고 탐구만 11인데 잇올+수학영어 학원 어떰 ㅠㅠ? 서울 중구...
-
골댕이 안고싶다 2
포근한 털과 품에 안겨 잠들고 싶다
-
가끔 문학 문제를 풀다 보면 진짜 애매한 문제 가 나올 때가 있다. 이런 문제들의...
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][혜화 밥약 추천] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
해부실습
-
추천하시나요? 하신다면 어떤 점이 좋은지 알려주시면 감사요ㅠㅠㅠㅠㅠㅠㅠ
-
그게 나야 바 둠바 두비두밥~ ^^
-
해 주실 수 있나요 ㅜㅜ 수학 해야 돼서 하루에 국어 최대로 쓸 시간이 2시간...
-
온동네 강아지들에게 사랑받는 직업 부럽다
-
ㅎㅇ반말함 오늘은 수능영어 등급컷을 표로 만든 부분을 들고와 봄 이걸 왜 캡쳐해,...
-
서울 내 자소서 면접 첨삭 선생님 구하면 연락줭
-
연대 고대 중에 6
캠퍼스 더 예쁘다고 생각하는 곳은 어디인가여 객관적으로@@
-
ㅇㅂㄱ 12
-
딴걸 사버림
-
호감옯붕이가 탈릅했어… 잘 지내라… 고대 붙길 바라…
-
귀엽고 사랑스러움
-
컷 몇 점 정도인지 알 수 있을까요? 제발… 제가 759.37인데 안쓰고 시립...
-
아니 약을 파는데(물리) 진짜 효과가 잇으면 다들 운덩을 왜하나싶어서 아님...
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
로스쿨이야 서성한도 학벌로 손해본다는말 나오는건 유명하고 회계사나 세무사도...
-
허위표본 1명으로 20명 모집 21등까지 붙음 점공률 45% 정도 약대 라인이라 이...
-
D-1 3
큰일났다
-
평가원기출이고 좀 옛날기출일거에요 현대소설인데 내용이 주인공이 가난해서 부잣집이 죄...
-
병원방문횟수 줄이자는데 젊은세대가 발작하는건 멍청한거야 0
어차피 니들이 낼 돈인데 사실 나야 상관없긴함
-
과외가 두렵다 5
네
-
난 죽은 다음에 털만 뽑아서 패딩 만드는 줄 알았는데 (모피도) 아예 살아있는...
-
손님 없으신가
-
통합사회 통합과학은 문항 수도 안 나온걸로 아는데 이런 전반적인 시행 계획 언제 나오나요?
-
확실히 외모에대한눈은 어른들이랑 요즘애들이 다른거같음 0
관점 이라구해야하나 내친구가 자맨데 친구는 인스타스타임 짖짜이쁘고지역에서 유명하고...
-
애초에 자기돈 10만원씩 진료비 내라면 병원 저렇게 많이 가겠냐고 4
한국인만 질병에 취약한 유전자가 있는것도 아니고 그냥 그동안 다 지돈 아니라고 병원 들락거렸던거임
-
쉬워서 그런가?
-
얼버기 2
-
김동욱 커리 1
이번 수능 5등급인데 김동욱 커리 어케 타야할까요
-
이거은근좋을지도
미분이 가능하다는 것은 좌,우미분계수가 같아야 하죠
위 식은 우미분계수와 좌미분계수의 평균값인데
그 두 값이 같다고 할수는 없지요
예를 들자면 f(x)=|x| 는 x=0 에서
좌,우미분계수의 평균값이 0으로 존재하지만 0에서 미분가능하진 않지요
네 그럼 저 식을 delta y / delta x 라고 이해하면 안된다는 건가요??
궁금한 게, 분명 교과서에는 delta y / delta x 의 극한값이 존재하면 미분가능하다고 하며 그 값을 미분계수다. 라고 하는데요.
저는 위의 식을 delta y / delta x 라 봤거든요..
{ f(a+h)-f(a)} / h 와 {f(a+h)-f(a-h)} / 2h 는 어떤 차이가 있는건가요??
제가 느끼는 건 앞의 식은 고정된 값이 있다는 정도 밖에없는데요 ㅜㅜ
만약 그 때문이라면 {f(2x)-f(x)} / x 의 극한도 미분계수라 할 수 없는 것인가요?
함수가 미분가능하다 라는 전제조건이 있을 때랑 없을 때 어떻게 다른지 궁금합니다 ㅜㅜ
저식은 단순히 dy/dx 로 이해하시는거보단
(f'(a+0)+f'(a-0))/2 로 이해하시는게 맞는거 같아요
댓글로 질문하신 두 식은 함수가 미분가능하다는 전제가 있을때만 같은 값이에요
(f(a+h)-f(a))/h 는
h가 +0이면 우미분계수 (=p라 하고)
-0이면 좌미분계수 (=q라 한다면)
(f(a+h)-f(a-h))/2h 는 h가 +0일 경우와 -0일 경우 모두
(p+q)/2 이죠
미분이 가능하단 전제가 있다면 p=q이므로
p=q=(p+q)/2가 성립하지만
전제가 없다면 x=a에서 p≠q일 수도 있으니까
p=q=(p+q)/2가 성립하지 않을 수 있죠
모바일이라 횡설수설 썼네요 ㅠㅠ
너무 횡설수설한거 같아서 ; 요약하자면
delta y / delta x 의 극한값이 존재하면 미분가능하고
그 값이 미분계수라는 거잖아요 ?
그런데 극한값이란게 우극한값과 좌극한값이 같을때
거기서 극한값을 '존재' 한다고 하잖아요
따라서 미분가능이라는 전제가 없다면
delta y / delta x 의 좌우극한이 다른 점이 있을수 있고
거기서 dy /dx 의 극한은 '존재'하지 않는거죵
그럼 {f(a+h)-f(a-h)}/2h 라는 식의 극한값은 미분계수일 때도 있고 아닐 때도 있는거 잖아요.
그러니까 저러한 식의 극한값이 존재한다고 해서 미분이 가능한지 불가능한지 결정할 수 없다 라는 게 맞죠?
교과서에서 delta y / delta x 의 극한값은 미분계수라 했으니 저 식은 delta y / delta x 라고 보면 안되는 것인가요?
그리구요 ㅠㅠ
저러한 식이 주어지면 무조건 식변환을 해서 풀어야하는 건가요?
하나의 f(a)라는 고정점이 주어지지 않은 경우에
반드시 f(a)라는 점을 더하고 빼서 식변환시킨다음 미분계수의 정의에
들어맞게 바꿔사 풀어야 하는건가요,?
그리구 f(2x)-f(x) / x 의 극한값도 f'(0) 라고 하면 안되는 거죠?
결정할수 없고 dy / dx 라 볼수 없어영ㅋ
미분가능전제가 없으면 아래식도 f'(0)라 할수 없고요
그리고 저런식들은 이해만 제대로 되어있고 익숙해지도록 적응만 되면 f(a)를 빼고 더하는 과정은 생략해도 되지만 원론적으론 정의를 이용해서 푸는게 맞아요 ㅎㅎ
음 왜 delta y / delta x 로 볼 수없는건가여??
미분가능성의 엄밀한 정의는, 한쪽 끝을 (기호로 적자면, 예를 들어 x = a 라는 점에) 고정시킨 상태에서 모든 논의를 전개합니다. 따라서 이 정의를 만족하지 않는 경우는 '정의에 의하여' 미분이 불가능합니다.
그런데, 한쪽 끝이 고정된 경우가 아닌 양쪽 끝이 모두 자유롭게 변할 수 있는 경우에 그 양끝점에서의 평균기울기의 극한은 어떻게 될까요?
우리는 분명히 이런 경우가 미분가능성의 정의에 의하여 정당화되기를 원하며, 그것이 우리의 직관입니다.
결론적으로, 적당히 말로 적어보자면 다음 두 사실이 서로 필요충분조건임이 증명되어 있습니다.
(1) f(x)는 x = a 에서 미분가능하며, 그 지점에서 미분계수 값이 f'(a)이다.
(2) x = a 양 쪽에서 비슷한 속도로 접근하는 '임의의' 경우에 대하여, Δy/Δx 가 f'(a)로 수렴한다.
미분가능성은 이처럼 강력한 조건입니다. 따라서 요약하자면,
(i) 미분가능성은 우선 정의대로 따져야 한다.
(ii) 우리가 직관적으로 생각하는 '평균기울기의 극한'이라는 개념에서 미분가능성이 유도되려면, 한 가지 경우가 아닌 '가능한 거의 대부분의 Δx → 0 인 경우에 대하여 Δy/Δx 가 같은 값으로 수렴해야 한다' 는 조건이 필요하다.
는 것을 알 수 있습니다. 질문하신 경우는 이러한 조건들에 부합하지 않는 더욱 약한 조건이 됩니다.
p.s. 그러면 lim_{h→a} {f(a+2h) - f(a-h)}/3h = L 이 존재하면 f(x)는 x = a 에서 미분가능할까요? 네, 놀랍다면 놀랍고 당연하다면 당연하게도, 이 경우 f'(a)가 존재하고 L과 같은 값을 가집니다. 일반적으로, |p| ≠ |q| 일 때
lim {f(a+ph) - f(a-qh)} / (p-q)h = L
가 존재할 필요충분조건은 f(x)가 x = a 에서 미분가능하고 f'(a) = L 인 것입니다.
위 명제는 틀렸다고 할 수 있습니다
기존 맞는 명제는 x가 임의의 점 a에서 미분 가능하다 라는 조건이 붙어야 위 언급하신 식이 f’(a)라 할 수 있습니다 그 이유로는 x의 값이 a-h에서 a+h까지 변할때의 함수의 평균변화율이지만 움직이는 두 점만 존재할 뿐 정점이 없기 때문에 같다 할 수 없습니다. 따라서 필요한 조건이 미분 가능하다는 것이 언급 돼있어야 하는 것입니다.